ВЛИЯНИЕ МЕТАЛЛА В СТРУКТУРЕ ПОРФИРИНА НА КИНЕТИКУ ЭЛЕКТРОПОЛИМЕРИЗАЦИИ И МОРФОЛОГИЮ ПЛЕНОК НА ОСНОВЕ ГИДРОКСИФЕНИЛПОРФИРИНА

  • Mitar V. Lutovaс Университет «Унион»
  • Svetlana A. Chulovskaya Институт химии растворов им. Г.А. Крестова РАН
  • Sergey M. Kuzmin Институт химии растворов им. Г.А. Крестова РАН
  • Vladimir I. Parfenyuk Институт химии растворов им. Г.А. Крестова РАН
Ключевые слова: 2H-5, 10, 15, 20-тетракис(4-гидроксифенил)порфирин, Zn-5, 20-тетракис-(4-гидроксифенил)порфирин, электрополимеризация, морфология, кинетика

Аннотация

Продемонстрирована принципиальная возможность получения пленок из ДМСО при активированном кислородом электрохимическом окислении гидроксифенилпорфирина и его цинкового комплекса. Изучена кинетика осаждения и морфология пленок. Показано, что происходит пассивация поверхности рабочего электрода при осаждении пленки порфирина-лиганда; при осаждении пленки металлокомплекса поверхность не пассивируется. Поэтому электрохимический метод позволяет сформировать достаточно толстые пленки с глобулярной структурой на базе металлокомплекса, и пленки малой толщины и слоистой структуры на базе порфирина-лиганда.

Литература

Chehg N., Kemna C., Goubert-Renaudin S., Wieckowski A. Reduction reaction by porphyrin-based catalysts for fuel cells. Electrocatal. 2012. V. 3. P. 238-251.

Hod I, Sampson M.D., Deria P., Kubiak C.P., Farha O.K., Hupp J.T. Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal. 2015. V. 5. P. 6302-6309.

Paske A.C., Gunsch M.J., O’Donnell J.L. Electropolymerized Ultrathin Chromophore Films for VOC Sensing. ECS Transactions. 2011. V. 35. P. 29-34.

Lvova L., Natale C.D., Paolesse R. Porphyrin-based chemical sensors and multisensor arrays operating in the liquid phase. Sensors and Actuators B. 2013. V. 179. P. 21-31.

Khaderbad M.A., Tjoa V., Rao M., Phandripande R., Madhu S., Wei J., Ravikanth M., Mathews N., Mhaisalkar S.G., Rao V.R. Fabrication of unipolar graphene field-effect transistors by modifying source and drain electrode interfaces with zinc porphyrin. ACS Appl. Mater. Interfaces. 2012. V. 4. P. 1434-1439. DOI: 10.1021/am201691s.

Hoang M.H., Choi D.H., Lee S.J. Organic field-effect transistors based on semiconducting porphyrin single crystals. Synthetic Metals. 2012. V. 162. P. 419-425. DOI: 10.1016/ j.synthmet.2012.01.005.

Zhou J., Liu Q., Feng W., Sun Y., Li F. Upconversion luminescent materials: advances and applications. Chem. Rev. 2015. V. 115. P. 395-465. DOI: 10.1021/cr400478f.

El-Nahass M.M., Farag A.A.M., El-Metwally M., Abu-Samaha F.S.H., Elesh E. Structural, absorption and dispersion characteristics of nanocrystalline copper tetraphenyl porphyrin thin films. Synthetic Metals. 2014. V. 195. P. 110-116. DOI: 10.1016/j.synthmet.2014.05.013.

Gervaldo M., Funes M., Durantini J., Fernandez L., Fungo F., Otero L. Electrochemical polymerization of palladium (II) and free base 5,10,15,20-tetrakis(4-N,N-diphenylaminophenyl)porphyrins: Its applications as electrochromic and photoelectric materials. Electrochimica Acta. 2010. V. 55. P. 1948-1957. DOI: 10.1016/j.electacta.2009.11.014.

Durantini J., Morales G.M., Santo M., Funes M., Durantini E.N., Fungo F., Dittrich T., Otero L., Gervaldo M. Synthesis and characterization of porphyrin electrochromic and photovoltaic electropolymers. Organic Electronics. 2012. V. 13. P. 604-614. DOI: 10.1016/j.orgel.2012.01.004.

Solar Cells - Dye-Sensitized Devices. Ed. Prof. Kosyachenko L.A. In Tech. 2011. 492 p.

Suarez M.B., Durantini J., Otero L., Dittrich T., Santo M., Milanesio M.E., Durantini E., Gervaldo M. Electrochemical Generation of Porphyrin-Porphyrin and Porphyrin-C60 Polymeric Photoactive Organic Heterojunctions. Electrochimica Acta. 2014. V. 133. P. 399-406. DOI: 10.1016/j.electacta.2014.04.011.

Day N.U., Wamser C.C., Walter M.G. Porphyrin polymers and organic frameworks. Polym. Int. 2015. V. 64. P. 833-857. DOI: 10.1002/pi.4908.

Drain C.M., Varotto A., Radivojevic I. Self-organized porphyrinic materials. Chem. Rev. 2009. V. 109. P. 1630-1658. DOI: 10.1021/cr8002483.

Pop S.D., Kate S.P., Rappich J., Hinrichs K. Tunable optical constants of thermally grown thin porphyrin films on silicon for photovoltaic applications. Solar Energy Materials & Solar Cells. 2014. V. 127. P. 169-173. DOI: 10.1016/j.solmat.2014.04.032.

Giancane G., Valli L. State of art in porphyrin langmuir-blodgett films as chemical sensors. Advances in Colloid and Interface Science. 2012. V. 171–172. P. 17-35. DOI: 10.1016/j.cis.2012.01.001.

Yoshida T., Zhang J., Komatsu D., Sawatani S., Minoura H., Pauporte T., Lincot D., Oekermann T., Schlettwein D., Tada H., Wohrle D., Funabiki K., Matsui M., Miura H., Yana H. Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 2009. V. 19. P. 17–43. DOI: 10.1002/adfm.200700188.

Modern Electroplating. Schlesinger M., Paunovic M. (Eds). John Wiley & Sons, Inc. 2010. 736 p.

Bettelheim A., White B.A., Raybuck S.A., Murray R.W. Electrochemical polymerization of amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins. Inorg. Chem. 1987. V. 26. P. 1009-1017. DOI: 10.1021/ic00254a011.

Walter M.G., Wamser C.C. Synthesis and characterization of electropolymerized nanostructured aminophenylporphyrin films. J. Phys. Chem. C. 2010. V. 114. P. 7563-7574. DOI: 10.1021/jp910016h.

Durantini J., Otero L., Funes M., Durantini E.N., Fungo F., Gervaldo M. Electrochemical oxidation-induced polymerization of 5,10,15,20-tetrakis[3-(N-ethylcarbazoyl)]porphyrin (P-CBZ). Formation and characterization of a novel electroactive porphyrin thin film. Electrochimica Acta. 2011. V. 56. P. 4126-4134. DOI: 10.1016/j.electacta.2011.01.111.

Hrbáč J., Gregor Č., Machová M., Králová J., Bystroň T., Číž M., Lojek A. Nitric oxide sensor based on carbon fiber covered with nickel porphyrin layer deposited using optimized electropolymerization procedure. Bioelectrochemistry. 2007. V. 71. P. 46. DOI: 10.1016/j.bioelechem.2006.09.007.

Murugan A., Nagarajan E.R., Manohar A., Kulandai-samy A., Lemtur A., Muthulaksmi L. Synthesis and electrochemical studies on oxidative products of vanadyl meso-5,10,15,20-tetrakis(p- hydroxyphenyl)porphyrin. Int. J. Chem. Tech. 2013. V. 5. P. 1646.

Humphrey J., Kuciauskas D. Charge-transfer states determine iron porphyrin film third-order nonlinear optical properties in the near-ir spectral region. J. Phys. Chem. B. 2004. V. 108. P. 12016. DOI: 10.1021/jp0485643.

Quan Y., Xue Z., Wu B., Qi H., Liu D. Determination of explosives based on novel type of sensor using porphyrin functionalized carbon nanotubes. Colloids and Surfaces B: Biointerfaces. 2011. V. 88. P. 396. DOI: 10.1016/j.colsurfb. 2011.07.020.

Milgrom L.R. Synthesis of some new tetra-arylporphyrins for studies in solar energy conversion J. Chem. Soc., Perkin Trans. I. 1983. P. 2535-2539. DOI: 10.1039/p19830002535.

Syrbu S.A., Semeykin A.S. Synthesis of (hydroxyphenyl)porphyrins. Zhurn. Org. Khim. 1999. V. 35. P. 1262-1265 (in Russian).

Semeikin A.S., Koifman O.I., Berezin B.D. Improved method for synthesis of substituted tetraphenylporphins. Chemistry of Heterocyclic Compounds. 1986. V. 22. P. 629-632. DOI: 10.1007/BF00575244.

Rumyantseva V.D., Gorshkova A.S., Mironov A.F. Improved Method of 5,10,15,20-Tetrakis(4-hydroxyphenyl)- porphyrins Synthesis. Macroheterocycles. 2013. V. 6. P. 59-61. DOI: 10.6060/mhc130222r.

Rojkiewicz M., Kus P., Kozub P., Kempa M. The synthesis of new potential photosensitizers [1]. Part 2. Tetrakis-(hydroxyphenyl)porphyrins with long alkyl chain in the molecule. Dyes and Pigments. 2013. V. 99. P. 627-635. DOI: 10.1016/j.dyepig.2013.06.029.

Chulovskaya S.A., Kuzmin S.M., Parfenyuk V.I. poly-aminophenylporfirin film formation activated by superoxide anion radicals. Macroheterocycles. 2015. V. 8. P. 259-265. DOI: 10.6060/mhc150662k.

Chulovskaya S.A., Kuzmin S.M., Shilov A.N., Parfenyuk V.I. Synthesis and property of semiconductor films of poly-5,10,15,20-tetrakis (4'-aminophenyl) porphyrin. Perspektivnyye materialy. 2016. N 5. P. 33-40 (in Russian).

Taylor S.R., Scribner L.L. The measurement and correction of electrolyte resistance in electrochemical tests. Philadelphia: American Society for Testing and Materials. 1990.

Morehouse K.M., Sipe H.J.JR, Mason R.P. The one-electron oxidation of porphyrins to porphyrin pi-cation radicals by peroxidases: An electron spin resonance investigation. Archives of biochemistry and biophysics. 1989. V. 273. P. 158-164.

Zhu W., Sintic M., Ou Z., Sintic P.J., McDonald J.A., Brotherhood P.R., Crossley M.J., Kadish K.M. Electrochemistry and spectroelectrochemistry of β,β′-fused quinoxalinoporphyrins and related extended bis-porphyrins with Co(III), Co(II), and Co(I) central metal ions. Inorg Chem. 2010. V. 49. P. 1027-1038. DOI: 10.1021/ic901851u.

Sawyer D.T., Roberts J.L.J. Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. Electroanal. Chem. 1966. N 12. P. 90-101.

Fujinaga T., Isutsy K., Adachi T. Polarographic studies of dissolved oxygen in dimethylsulphoxide–water mixtures. Bull. Chem. Soc. Jap. 1969. V. 42. P. 140-145. DOI: 10.1246/bcsj.42.140.

Islam M.M., Okajima T., Ohsaka T. In situ CCD video and voltammetric studies on enhanced cathodic peak observed at a hanging mercury drop electrode during consecutive two one-electron redox reactions in aprotic solutions. J. Electroanal. Chem. 2008. V. 618. P. 1–10. DOI: 10.1016/j. jelechem.2008.02.013.

Laoire C.O., Mukerjee S., Abraham K.M., Plichta E.J., Hendrickson M.A. Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. J. Phys. Chem. 2010. V. 114. P. 9178-9186. DOI: 10.1021/jp102019y.

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Estimation of antioxidant activity of tetrakis(p–aminophenyl)- porphine regard to superoxide ions by voltammetry method. Macroheterocycles. 2013. V. 6. P. 334-339. DOI: 10.6060/ mhc131057k.

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Substituent position influence on the electrochemical properties and antioxidant activity of tetra(aminophenyl)porphyrins. J. Porphyrins Phthalocyanines. 2014. V. 18. P. 585-593. DOI: 10.1142/S108842461450031X.

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. The coulometric approach to the superoxide scavenging activity determination: the case of porphyrin derivatives influence on oxygen electroreduction. J. Porphyrins Phthalocyanines. 2015. V. 19. P. 1053–1062. DOI: 10.1142/S1088424615500807.

Kuzmin S.M., Chulovskaya S.A., Parfenyuk V.I. Mechanism and superoxide scavenging activity of hydroxy substituted tetraphenylporphyrins via coulometric approach. J. Electroanal.Chem. 2016. V. 772. P. 80-88. DOI: 10.1016/j. jelechem.2016.04.024.

Sluyters-Rehbach M. Physical and biophysical chemistry division commission on electrochemistry. Pure Appl. Chem. 1994. V. 66. P. 1831.

Kuz’min S.M., Chulovskaya S.A., Parfenyuk V.I. Effect of anodic potential on process of formation of polyporphyrin film in solutions of tetrakis(p-aminophenyl)porphin in dichloromethane. Russ. J. Electrochem. 2014. V. 50. P. 429–437. DOI: 10.1134/S1023193514050073.

Jovic V.D., Jovic B.M. EIS and differential capacitance measurements onto single crystal faces in different solutions: Part I: Ag(111) in 0.01 M NaCl. J. Electroanal. Chem. 2003. V. 541. P. 1-11. DOI: 10.1016/S0022-0728(02)01309-8.

Nyikos L., Pajkossy T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochem. Acta. 1985. V. 30. P. 1533-1540. DOI: 10.1016/0013-4686(85)80016-5.

Liu S.H. Fractal model for the ac response of a rough interface. Phys. Rev. Lett. 1985. V. 55. P. 529-532. DOI: 10.1103/PhysRevLett.55.529.

Опубликован
2018-07-17
Как цитировать
LutovaсM. V., Chulovskaya, S. A., Kuzmin, S. M., & Parfenyuk, V. I. (2018). ВЛИЯНИЕ МЕТАЛЛА В СТРУКТУРЕ ПОРФИРИНА НА КИНЕТИКУ ЭЛЕКТРОПОЛИМЕРИЗАЦИИ И МОРФОЛОГИЮ ПЛЕНОК НА ОСНОВЕ ГИДРОКСИФЕНИЛПОРФИРИНА. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 59(12), 32-39. https://doi.org/10.6060/tcct.20165912.5497
Раздел
ХИМИЯ неорганич., органич., аналитич., физич., коллоидная, высокомол. соединений