ЭВОЛЮЦИЯ И ПЕРСПЕКТИВЫ ЭНЕРГО- И РЕСУРСОСБЕРЕГАЮЩИХ ПОДХОДОВ В ТЕХНОЛОГИИ АММИАКА

  • Konstantin V. Aksenchik Череповецкий государственный университет
Ключевые слова: аммиак, технология аммиака, энергосбережение, ресурсосбережение, энергопотребление

Аннотация

Азот является одним из биогенных элементов, необходимых для питания растений. Проблема связывания атмосферного азота продолжает оставаться актуальной и в настоящее время. Если в начале XX века проблема решалась в направлении синтеза аммиака, то сегодня вектор поиска сместился в энерго- и ресурсосбережение. Наличие в молекуле азота прочной тройной химической связи предопределяет большую энергоемкость промышленного производства соединений связанного азота. В данной обзорной статье рассмотрена эволюция технологии аммиака, как наиболее распространенного соединения связанного азота, с позиции совершенствования подходов энерго- и ресурсосбережения. Существующие высокие темпы потребления ископаемого углеродного топлива, особенно природного газа, который является в настоящее время основным видом сырья для производства аммиака, и связанные с этим ежегодно растущие выбросы диоксида углерода в атмосферу, вынуждают ученых всего мира искать альтернативные способы промышленного получения аммиака. В данной статье сделана попытка выявления особенностей и хронологических рамок основных этапов развития подходов к энерго- и ресурсосбережению в технологии аммиака. Определены приемы усовершенствования, способствующие факторы в привязке к этапам развития. Дана сравнительная оценка известных вариантов технологии аммиака и соединений связанного азота по показателям ресурсо- и энергопотребления на разных этапах развития. Выполнено сравнение действующих в России энерготехнологических агрегатов синтеза аммиака по ресурсо- и энергопотреблению. Показано, что современное состояние технологии аммиака характеризуется практически полным исчерпанием возможных вариантов дальнейшего энерго- и ресурсосбережения известных технологических схем, что аммиачные технологии на природном газе в будущем перестанут удовлетворять ужесточающимся требованиям к уровню эмиссии диоксида углерода. Приведена оценка энергопотребления альтернативных способов получения аммиака.

Литература

Levin B.V. New energy efficient solutions in the mineral fertilizers production. Trudy NIUIF 1919-2014: Coll. of scientific reports. M.: NIUIF. 2014. P. 20-26 (in Russian).

Pattabathula V., Richardson J. Introduction to Ammonia Production. 2016. Date of the address 26.08.2020. Access mode: https://www.aiche.org/resources/publications/cep/2016/

september/introduction-ammonia-production#:~:text=Haber%20realized%20that%20the%20 amount,a% 20patent%20for%20the%20concept.

Aziz M., Oda T., Morihara A., Kashiwagi T. Combined nitrogen production, ammonia synthesis, and power generation for efficient hydrogen storage. Energy Procedia. 2017. V. 143. P. 674-679. DOI: 10.1016/j.egypro.2017.12.745.

Peng P., Chen P., Schiappacasse C., Zhou N., Anderson E., Chen D., Liu J., Cheng Y., Hatzenbeller R., Addy M., Zhang Y., Liu Y., Ruan R. A review on the non-thermal plasma-assisted ammonia synthesis technologies. J. Cleaner Production. 2018. V. 177. P. 597-609. DOI: 10.1016/j.jcle-pro.2017.12.229.

Best Available Technology Information Technology Handbook. ITS 2-2019. Manufacture of ammonia, ferti-lizers and inorganic acids. Vved. 2020-03-01. М.: Byuro NDT. 2019. 825 p (in Russian).

Federal Law "On energy saving and on increasing energy efficiency and on amendments to certain legislative acts of the Russian Federation" dated 23.11.2009 N 261-FZ. Date of the address 26.08.2020. Access mode: http://www.consultant.ru/document/cons_doc_LAW_93978/ (in Russian).

Travis A.S. Nitrogen Capture: The Growth of an International Industry (1900-1940). Springer: Cham. 2018. P. XXI 411. DOI: 10.1080/00026980.2019.1573793.

Kuznetsov L.D., Dmitrienko L.M., Rabina P.D. Sokolinskiy Yu.A. Ammonia synthesis. M.: Khimiya. 1982. 296 p. (in Russian).

Atroshchenko V.I., Alekseyev A.M., Zasorin A.P. Associated nitrogen technology course. M.: Khimiya. 1968. 384 p. (in Russian).

Development of the chemical industry in the USSR. 1917-1980. V. 2. Development of individual branches of the chemical industry. Ed. by L.A. Kostandov, N.M. Zhavoronkov. M.: Nauka. 1984. 400 p (in Russian).

Rusin V.N., Tarchigina N.F. Fixed nitrogen technology. M.: Izd. MGOU. 2009. 199 p. (in Russian).

Vorobiev N.I. Fixed nitrogen and nitrogen fertilizers technology. Minsk: BGTU. 2011. 216 p (in Russian).

Paull J. A Century of Synthetic Fertilizer. Journal of Bio-Dynamics Tasmania. 2009. 16-21. Дата обращения 26.08.2020. Режим доступа: https://www.researchgate.net/ publica-tion/237259471_A_Century_of_Synthetic_Fertilizer.

Dybkjær I. 100 years of ammonia synthesis technology. Ammonia Plant Safety and Related Facilities. 2013. N 54.

P. 101-109. Date of the address 26.08.2020. Access mode: https://www.researchgate.net/publication/ 286297344_100_ years_of_ammonia_synthesis_technology/.

Ioffe V.B. Basics of hydrogen production. L.: Gostoptekhizdat. 1960. 430 p. (in Russian).

Ivanov A.F., Shofman F.M. Industry of bound nitrogen in capitalist countries: (Technical and economic review of the current state and development trends of the nitrogen industry). M.: Otraslevoye byuro tekhn. informatsii GIAP. 1960. 147 p. (in Russian).

Lobachev A.G. Achievements of the modern industry of synthetic ammonia. M.: Vsesoyuz. in-t nauch. i tekhn. in-formatsii. 1958. 58 p. (in Russian).

Bray D.D., King S.M., Jonsson J. A new milestone in the production of ammonia. Date of the address 26.08.2020. Access mode: http://sites.kpi.kharkov.ua/xtnv/file.axd?file=2014% 2F3%2F%D0%90%D0%9C%D0%9C%D0%98%D0%90%D0%9AHaldorTopsoe_Paper_Anewindustrybenchmarkfor-ammoniaproduction__Nitrogen%2BSyngasconferenceFeb 2014_RU.pdf. (in Russian).

Leibush A.G., Semenova V.N., Kazarnovsky Ya.S., Karkhov N.V. Production of process gas for the synthesis of ammonia and methanol from hydrocarbon gases. M.: Khimiya. 1971. 286 p. (in Russian).

Appl M. Ammonia. Ullmann's Encyclopedia of Industrial Chemistry. 2006. V. 2. DOI: 10.1002/14356007.a02_143.pub2.

Rafiqul I., Weber C., Lehmann B., Voss A. Energy efficiency improvements in ammonia production – perspec-tives and uncertainties. Energy. 2005. V. 30. N 13. P. 2487-2504. DOI: 10.1016/j.energy.2004.12.004.

22. Patrikeeva N.I. Development of energy-saving processes for the production of ammonia in capitalist countries. Khim. Prom-st. 1990. N 10 (631). P. 55-58 (in Russian).

Sosna M.Kh., Kasym O.N. The main trends in the devel-opment of ammonia production technology. NefteGazo-Khimiya. 2017. N 4. P. 17-21 (in Russian).

Aleinov D.P. The main directions of technical progress in the nitrogen industry. Khim. Prom-st' Segodnya. 2005. N 9. P. 3-16 (in Russian).

Kirova-Yordanova Z. Exergy-based estimation and comparison of urea and ammonium nitrate production ef-ficiency and environmental impact. Energy. 2017. V. 140. Pt. 1. P. 158-169. DOI: 10.1016/j.energy.2017.08.086.

Akhmetov T.G., Akhmetova R.T., Gaisin L.G., Akhmetova L.T. Chemical technology of inorganic substances. Book. 1. S-Pb.: Lan'. 2017. 688 p. (in Russian).

Aksenchik K.V. Chemical technology of inorganic substances. Cherepovets: FGBOU VO CGU. 2018. 141 p. (in Russian).

Sosna M.Kh., Goldobina M.A. Current state and prospects for the development of ammonia production in Russia. NefteGazoKhimiya. 2018. N 4. P. 17-21 (in Russian). DOI: 10.24411/2310-8266-2018-10403.

Cherkasov N., Ibhadon A., Fitzpatrick P. A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process.: Process Intensification. 2015. V. 90. P. 24-33. DOI: 10.1016/j.cep.2015.02.004.

Brown T. Innovations in Ammonia. Date of the address 26.08.2020. Access mode: https://www.hydrogen.energy.gov/ pdfs/htac_dec18_05_brown.pdf.

Brown T. Ammonia technology portfolio: optimize for energy efficiency and carbon efficiency. Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/ ammonia-technology-portfolio-optimize-for-energy-efficiency-and-carbon-efficiency/.

Conference of the Parties Twenty-first session Paris, 30 November to 11 December 2015 Agenda item 4(b) Durban Platform for Enhanced Action (decision 1/CP.17). Adoption of the Paris Agreement 2015. Date of the ad-dress 26.08.2020. Access mode: https://unfccc.int/resource/docs/2015/ cop21/ eng/l09r01.pdf.

Philibert C. Producing industrial hydrogen from renewable energy. 2017. IEA. Paris. Date of the address 26.08.2020. Access mode: https://www.iea.org/commentaries/producing-industrial-hydrogen-from-renewable-energy.

Brown T. All together now: every major ammonia technology licensor is working on renewable ammonia. Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/all-together-now-every-major-ammonia-technology-licensor-is-working-on-renewable-ammonia/.

Brown T. ThyssenKrupp’s “green hydrogen and renewa-ble ammonia value chain” Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/thyssenkrupps-green-hydrogen-and-renewable-ammonia-value-chain/.

Smith C., Hill A.K., Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbonfree energy landscape. Energy Environ. Sci. 2020. N 13. P. 331-344. DOI: 10.1039/C9EE02873K.

Zhigareva G.V. Ammonia in Russia: a leap forward. Khim. Prom-st' Segodnya. 2019. N 1. P. 6-12 (in Rus-sian).

Giddey S., Badwal S.P.S., Kulkarni A. Review of electrochemical ammonia production technologies and mate-rials. Int. J. Hydrogen Energy. 2013. 38. P. 14576-14594. DOI: 10.1016/j.ijhydene.2013.09.054.

39. Renner J.N., Greenlee L.F., Herring A.M., Ayers K.E. Electrochemical synthesis of ammonia: A low pressure, low temperature approach. Electrochem. Soc. Interface. 2015. N 24. P. 51-57. DOI: 10.1149/2.F04152if.

Norskov J., Chen J. Sustainable Ammonia Synthesis. Roundtable Discussion held on February 18. 2016. https://science.osti. gov/-/media/bes/pdf/reports/2016/SustainableAmmoniaReport.pdf?la=en&hash=893E6E2A17E7108968F2CBF6630FD7DCF5D47B95.

Szymanski S., Gellett W. Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission-Free Ammonia Production. The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https://nh3fuelassociation.org/?s=Szymanski.

Soloveichik G. Future of Ammonia Production: Improvement of Haber-Bosch Process or Electrochemical Synthesis? The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https://nh3fuelassociation.org/2017/10/01/future-of-ammonia-production-improve-ment-of-haber-bosch-process-or-electrochemical-synthesis/.

Hansen J.B. Solid Oxide Cell Enabled Ammonia Synthesis and Ammonia Based Power Production. The 14th An-nual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https://nh3fuelassociation.org/?s=HansenSolidOxideCell.

Brown T. Future Ammonia Technologies: Electrochemical (part 3). Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/future-ammonia-technologies-electrochemical-part-3/.

Wang L., Xia M., Wang H., Huang K., Qian C., Maravelias C.T., Ozin G.A. Greening Ammonia toward the Solar Ammonia Refinery. Joule. 2018. V. 2. N 6. P. 1055-1074. DOI: 10.1016/j.joule.2018.04.017.

Garagounis I., Vourros A., Stoukides D., Dasopoulos D., Stoukides M. Electrochemical Synthesis of Ammonia: Recent Efforts and Future Outlook. Membranes (Basel). 2019. N9(9). P.112. DOI: 10.3390/membranes9090112.

Zhou F., Azofra L.M., Ali M., Kar M., Simonov A.N., McDonnell-Worth C., Sun C., Zhang X., MacFarlane D.R. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy Environ. Sci. 2017. N 10. P. 2516-2520. DOI: 10.1039/C7EE02716H.

Shipman M.A., Symes M.D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today. 2017. V. 286. P. 57-68. DOI: 10.1016/j.cattod.2016.05.008.

Brown T. Future Ammonia Technologies: Electrochemical (part 1). Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/future-ammonia-technologies-electrochemical-part-1/.

Kyriakou V., Garagounis I., Vasileiou E., Vourros A., Stoukides M. Progress in the Electrochemical Synthesis of Ammonia. Catalysis Today. 2017. V. 286. P. 2-13. DOI: 10.1016/j.cattod.2016.06.014.

Loney C., Graybill1 A., Xu C., Renner J., Acharya P., Suttmiller D., Greenlee L., Wiles L., Ayers K., Gellett W. Exploring Peptide-Bound Catalysts for Electrochemical Ammonia Generation. The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https:// nh3fuelassociation.org/?s=ExploringPeptide-BoundCatalystsforElectrochemicalAmmoniaGeneration.

Szymanski S., Gellett W. Nitrogenase Inspired Peptide-Functionalized Catalyst for Efficient, Emission-Free Ammonia Production. The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https:// nh3fuelassociation.org/?s=NitrogenaseInspiredPeptide-Func-tionalizedCatalystforEfficient%2CEmission-FreeAmmoniaProduction.

Brown T. Future Ammonia Technologies: Electrochemical (part 2). Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/future-ammonia-technologies-electrochemical-part-2/.

Milton R.D., Cai R., Abdellaoui S., Leech D., De Lacey A.L., Pita M., Minteer S.D. Bioelectrochemical Haber–Bosch Process: An Ammonia‐Producing H2/N2 Fuel Cell. Angewandte Chemie (International ed. in English). 2017.

N 56(10). Р. 2680-2683. DOI: 10.1002/anie.201612500.

Cinti G., Frattini D., Jannelli E., Desideri U., Bidini G. Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant. Appl. Energy. 2017. V. 192. P. 466-476. DOI: 10.1016/j.apenergy.2016.09.026.

Brown T. Green ammonia: Haldor Topsoe’s solid oxide electrolyzer. Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/haldor-topsoes-solid-oxide-electrolyzer/.

Xu G.C., Liu R.Q., Wang J. Electrochemical synthesis of ammonia using a cell with a Nafion Membrane and SmFe0.7Cu0.3-xNi(x)O3 (x=0-0.3) cathode at atmospheric pressure and lower temperature. Sci. China Ser. B-Chem. 2009. N 52. P. 1171. DOI: 10.1007/s11426-009-0135-7.

Lan R., Tao S.W. Electrochemical Synthesis of Ammonia Directly from Air and Water Using a Li/H/NH4 Mixed Conducting Electrolyte. RSC Adv. 2013. N 3. P. 18016-18021. DOI: 10.1039/C3RA43432J.

Licht S., Cui B.C., Wang B.H., Li F.F., Lau J., Liu S.Z. Ammonia Synthesis by N2 and Steam Electrolysis in Mol-ten Hydroxide Suspensions of Nanoscale Fe2O3. Science. 2014. N 345. P. 637-640. DOI: 10.1126/science.1254234.

Hollevoet L., Ras M.D., Roeffaers M., Hofkens J., Martens J.A. Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Lett. 2020. 5. 4. P. 1124-1127. DOI: 10.1021/acsenergylett.0c00455.

McEnaney J.M., Singh A.R., Schwalbe J.A., Kibsgaard J., Lin J.C., Cargnello M., Jaramillo T.F., Norskov J.K. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 2017. N 10. P. 1621-1630. DOI: 10.1039/ C7EE01126A.

Chen J.G., Crooks R.M., Seefeldt L.C., Bren K.L., Bullock R.M., Darensbourg M.Y., Holland P.L., Hoffman B., Janik M.J., Jones A.K., Kanatzidis M.G., King P., Lancaster K.M., Lymar S.V., Pfromm P., Schneider W.F., Schrock R.R. Beyond fossil fuel-driven nitrogen transformations. Science. 2018. V. 360. N 6391. eaar6611. DOI: 10.1126/science.aar6611.

Nishibayashi Y. Recent Progress in Transition-Metal-Catalyzed Reduction of Molecular Dinitrogen under Am-bient Reaction Conditions. Inorg. Chem. 2015. N 54. P. 19. 9234-9247. DOI: 10.1021/acs.inorgchem.5b0088.

Kuriyama S., Arashiba K., Nakajima K., Matsuo Y., Tanaka H., Ishii K., Yoshizawa K., Nishibayashi Y. Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand. Nat. Commun. 2016. N 7. P. 12181. DOI: 10.1038/ ncomms12181.

Stucke N., Flöser B.M., Weyrich T., Tuczek F. Nitrogen Fixation Catalyzed by Transition Metal Complexes: Re-cent Developments. Eur. J. Inorg. Chem. 2018. V. 2018. N 12. P. 1333-1445. DOI: 10.1002/ejic.201701326.

Mhaske A., Gawad J., Bonde R. Nitrogen Fixation by Transition Metals: A Review. Sci. Revs. Chem. Commun. 2017. N 7. P. 1-11. DOI: 10.1002/ejic.201701326.

Kambara S., Hayakawa Y., Inoue Y., Miura T. Hydro-gen Production from Ammonia Using Plasma Membrane Reactor. J. Sustain. Dev. Energy Water Environ. Syst.2016. N 4(2). P. 193-202. DOI:10.13044/j.sdewes.2016.04.0016.

Li S., Medrano J.A., Hessel V., Gallucci F. Recent Progress of Plasma-Assisted Nitrogen Fixation Research: A Review. Processes. 2018. N 6. P. 248. DOI: 10.3390/pr6120248.

Hawtof R., Ghosh S., Guarr E., Xu C., Sankaran R.M., Renner J. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Sci. Adv. 2019. N 5. eaat5778. DOI: 10.1126/sciadv.aat5778.

Bruni G., Rizzello C., Santucci A., Alique D., Incelli M., Tosti S. On the energy efficiency of hydrogen production processes via steam reforming using membrane reactors. Int. J. Hydrogen Energy. 2019. V. 44. N 2. P. 988-999. DOI: 10.1016/j.ijhydene.2018.11.095.

Fuerst T., Lundin S., Zhang Z., Liguori S., Way D., Wolden C. Dense Metallic Membrane Reactor Synthesis of Ammonia at Moderate Conditions and Low Cost. The 14th Annual NH3 Fuel Conference. 2017. Date of the ad-dress 26.08.2020. Access mode: https://nh3fuelassociation.org/ 2017/10/01/dense-metallic-membrane-reactor-synthesis-of-ammonia-at-moderate-conditions-and-low-cost/.

Michalsky R., Avram A., Peterson B., Pfromm P., Pe-terson A. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage. Chem. Sci. 2015. N 6. P. 3965-3974. DOI: 10.1039/C5SC00789E.

Pfromm P., Heidlage M., Liu B., Shan N., Chikan V., Luo H., Flesher N. Nitride-Based Step Catalysis for Ammonia Synthesis at Atmospheric Pressure. The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https://nh3fuelassociation.org/?s=Nitride-BasedStepCatalysis.

Zhang S., Zhao Y., Shi R., Waterhouse G.I.N., Zhang T. Photocatalytic ammonia synthesis: Recent progress and future. Energy Chem. 2019. V. 1. N 2. P. 100013. DOI: 10.1016/j.enchem.2019.100013.

Brown T. Future Ammonia Technologies: Plasmas, Membranes, Redox. Date of the address 26.08.2020. Ac-cess mode: https://ammoniaindustry.com/future-ammonia-technologies-plasma-membrane-redox/.

Bartel C.J., Rumptz J.R., Holder A.M., Weimer A.W., Musgrave C.B. Screening Binary Redox Pairs for Solar Thermochemical Ammonia Synthesis Using Machine Learned Predictions of Gibbs Formation Energies at Finite Temperatures. The 14th Annual NH3 Fuel Conference. 2017. Date of the address 26.08.2020. Access mode: https:// nh3fuelassociation.org/?s=ScreeningBinaryRedoxPairsforSolar.

Hong J., Aramesh M., Shimoni O., Seo D.H., Yick S., Greig A., Charles C., Prawer S., Murphy A.B. Plasma Catalytic Synthesis of Ammonia Using Functionalized-Carbon Coatings in an Atmospheric-Pressure Non-equilibrium Discharge. Plasma Chem. Plasma Process. 2016. N 36. P. 917-940. DOI: 10.1007/s11090-016-9711-8.

Akay G., Zhang K. Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Mi-croporous Catalysts Promoted by Nonthermal Plasma. Ind. Eng. Chem. Res. 2017. N 56 (2). P. 457-468. DOI: 10.1021/ acs.iecr.6b02053.

Rouwenhorst K.H.R., Kim H., Lefferts L. Vibrationally Excited Activation of N2 in Plasma-Enhanced Catalytic Ammonia Synthesis: A Kinetic Analysis. ACS Sustainable Chem. Eng. 2019. N 7 (20). P. 17515-17522. DOI: 10.1021/acssuschemeng.9b04997.

Barboun P.M., Hicks J.C. Unconventional Catalytic Approaches to Ammonia Synthesis. Annual Rev. Chem. Biomolec. Eng. 2020. V. 11. P. 503-521. DOI: 10.1146/annurev-chembioeng-092319-080240.

Energy Technology Perspectives 2017. IEA. Paris. Date of the address 26.08.2020. Access mode: https://www.iea.org/ reports/energy-technology-perspectives-2017.

Brown T. The International Energy Agency’s scenarios for renewable ammonia. Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/the-international-energy-agencys-scenarios-for-renewable-ammonia/ 2017.

Brown T. IEA calls for renewable hydrogen and carbon-free ammonia. Date of the address 26.08.2020. Access mode: https://ammoniaindustry.com/iea-calls-for-renewable-hydrogen-and-carbon-free-ammonia/2017.

Kuzminykh M.M., Panteleeva V.V., Shein A.B. Cathodic hydrogen evolution on iron disilicide. I. Alkaline solu-tion. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.]. 2019. V. 62. N 1. P. 38-45. DOI:10.6060/ivkkt.20196201.5745.

Kuzminykh M.M., Panteleeva V.V., Shein A.B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solu-tion. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. [Russ. J. Chem. & Chem. Tech.]. 2019. V. 62. N 2. P. 59-64. DOI: 10.6060/ivkkt.20196202.5750.

Colli A.N., Girault H.H., Battistel A. Non-Precious Electrodes for Practical Alkaline Water Electrolysis. Materials (Basel, Switzerland). 2019. N 12(8). P. 1336. DOI: 10.3390/ma12081336.

Zayat B., Mitra D., Narayanan S.R. Inexpensive and Efficient Alkaline Water Electrolyzer with Robust Steel-Based Electrodes. J. Electrochem. Soc. 2020. V. 167. N 11. DOI: 10.1149/1945-7111/aba792.

Mayerhöfer B., McLaughlin D., Böhm T., Hegelheimer M., Seeberger D., Thiele S. Bipolar Membrane Electrode Assemblies for Water Electrolysis. ACS Appl. Energy Ma-ter. 2020. 3. 10. P. 9635–9644. DOI: 10.1021/acsaem.0c01127.

Опубликован
2020-12-08
Как цитировать
Aksenchik, K. V. (2020). ЭВОЛЮЦИЯ И ПЕРСПЕКТИВЫ ЭНЕРГО- И РЕСУРСОСБЕРЕГАЮЩИХ ПОДХОДОВ В ТЕХНОЛОГИИ АММИАКА. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 64(1), 4-21. https://doi.org/10.6060/ivkkt.20216401.6310
Раздел
Обзорные статьи