Открытый доступ Открытый доступ  Ограниченный доступ Платный доступ или доступ для подписчиков

АНАЛИЗ РАЗЛИЧНЫХ БАЗ ДАННЫХ ДЛЯ ПОТЕНЦИАЛОВ ИОНИЗАЦИИ И СРОДСТВА К ЭЛЕКТРОНУ ХИНОНОВ НА ОСНОВЕ ВЫЧИСЛЕНИЙ С ИСПОЛЬЗОВАНИЕМ ТЕОРИИ ФУНКЦИОНАЛА ПЛОТНОСТИ

Li Sun, Jianhua Ran, Cong Zhang, Felix Yu. Telegin

DOI: http://dx.doi.org/10.6060/tcct.2017608.5593
Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 8. C. 4-12

Аннотация


Исследование имеет отношение к решению теоретической проблемы изучения хинонов как представителей природных и синтетических соединений с большим разнообразием применений в химическом катализе, биохимических и технических областях науки. Для этого выбран метод компьютерной химии в качестве развитого инструмента для оценки электронных энергий простых хининов, нафтохинонов и антрахинонов, являющихся родоначальниками более сложных соединений. Проведены вычисления потенциалов ионизации и сродства к электрону 88 простых хинонов на основе использования метода B3LYP теории функционала плотности с различными базисными функциями, и на этой основе проведена оценка различных баз данных для энергий электронов. База данных для сродства к электрону включает опубликованные результаты измерений абсолютных значений сродства к электрону π-комплексов переноса заряда и данные, основанные на измерении относительных величин при изучении равновесия этого процесса. Найдена нелинейная квадратичная корреляция между вычисленными и экспериментальными значениями. Анализ относительных отклонений расчетных значений от экспериментальных данных указывает на высокое качество базы данных, представаленой в исследовании Хилала с сотр., основанной на измерении относительных равновесных величин переноса электронов. Результаты, найденные в исследовании, применимы для оценки корректности расчетных методов и экспериментальных для энергий электронов в ряду хинонов.

Для цитирования:

Ли Суэн, Дженьхуа Жан, Цонг Джанг, Телегин Ф.Ю. Анализ различных баз данных для потенциалов ионизации и сродства к электрону хинонов на основе вычислений с использованием теории функционала плотности. Изв. вузов. Химия и хим. технология. 2017. Т. 60. Вып. 8. С. 4-12.


Ключевые слова


ДФТ; потенциал ионизации; сродство к электрону; хиноны

Полный текст:

PDFPDF

Литература


Bachman J.E., Curtiss L.A., Assary R.S. Investigation of the redox chemistry of anthraquinone derivatives using densi-ty functional theory. J. Phys. Chem. A 2014. 118. P. 8852–8860. DOI: 10.1021/jp5060777.

Chen F., Zhang J., Jiang H., Wan X. Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simula-tion-aided molecular design. Chemistry, an Asian J. 2013. 8. P. 1497–1503. DOI: 10.1002/asia.201300176.

Guerard J.J., Tentscher P.R., Seijo M., Samuel Arey J. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions. Phys. Chem. Chem. Phys. 2015. 17. P. 14811–14826. DOI: 10.1039/C4CP04760E.

Imperatore C., Persico M., Aiello A., Luciano P., Guiso M., Sanasi M.F., Taramelli D., Parapini S., Cebrián-Torrejón G., Doménech-Carbó A., Fattorusso C., Menna M. Marine inspired antiplasmodial thiazinoquinones. Synthe-sis, computational studies and electrochemical assays. RSC Adv. 2015. 5.

P. 70689–70702. DOI: 10.1039/C5RA09302C.

Kalimullina L.R., Nafikova E.P., Asfandiarov N.L., Chi-zhov Y.V., Baibulova G.S., Zhdanov E.R., Gadiev R.M. Theoretical estimation of the electron affinity for quinone de-rivatives by means of density functional theory. Russ. J. Phys. Chem. 2015. 89. P. 429–435. DOI: 10.1134/S0036024415030152.

Satheshkumar A., Ganesh K., Elango K.P. Charge transfer facilitated direct electrophilic substitution in phenylaminonaph-thoquinones. Experimental, theoretical and electrochemical studies. New J. Chem. 2014. 38. P. 993-1003. DOI: 10.1039/c3nj01228j.

Seto K., Nakayama T., Uno B. Formal redox potentials of organic molecules in ionic liquids on the basis of quaternary nitrogen cations as adiabatic electron affinities. J Phys. Chem. B. 2013. 117. P. 10834–10845. DOI: 10.1021/jp402457k.

Sviatenko L.K., Gorb L., Hill F.C., Leszczynski J. Theoret-ical study of ionization and one-electron oxidation potentials of N-heterocyclic compounds. J. Computational Chem. 2013. 34. P. 1094–1100. DOI: 10.1002/jcc.23228.

Vázquez K., Espinosa-Bustos C., Soto-Delgado J., Tapia R.A., Varela J., Birriel E., Segura R., Pizarro J., Cerecetto H., González M., Paulino M., Salas C.O. New aryloxy-quinone derivatives as potential anti-Chagasic agents. Synthe-sis, trypanosomicidal activity, electrochemical properties, pharmacophore elucidation and 3D-QSAR analysis. RSC Adv. 2015. 5. P. 65153–65166. DOI: 10.1039/C5RA10122K.

Wang C., Liu H.X., Fang Z.Y., Wang Z.Y. Density Func-tional Theory Calculation on Polychlorinated Anthraquinones. Their Gas Phase Thermodynamic Function and Implication of the Cl Substituted Position. J. Chem. Eng. Data. 2010. 55. P. 1077–1086. DOI: 10.1021/je9003564.

Marenich A.V., Ho J., Coote M.L., Cramer C.J., Truhlar D.G. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys. Chem. Chem. Phys. 2014. 16. P. 15068–15106. DOI: 10.1039/C4CP01572J.

Lopez-Moreno A., Clemente-Tejeda D., Calbo J., Naeimi A., Bermejo F.A., Orti E., Perez E.M. Biomimetic oxidation of pyrene and related aromatic hydrocarbons. Unexpected electron accepting abilities of pyrenequinones. Chem. Com-mun. 2014. 50. P. 9372–9375. DOI: 10.1039/C4CC04026K.

Liu X.Y., Ma W., Zhou H., Cao X.M., Long Y.T. Bridge- and solvent-mediated intramolecular electronic communica-tions in ubiquinone-based biomolecular wires. Scientific Re-ports. 2015. 5. P. 1-11.

Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I., Cronin M., Dearden J., Gramatica P., Martin Y.C., Todeschini R., Consonni V., Kuz'min V.E., Cramer R., Benigni R., Yang C., Rathman J., Terfloth L., Gastei-ger J., Richard A., Tropsha A. QSAR modeling: where have you been? Where are you going to? J.Med. Chem. 2014. 57. P. 4977–5010. DOI: 10.1021/jm4004285.

Katritzky A.R., Karelson M., Lobanov V.S. QSPR as a means of predicting and understanding chemical and physical properties in terms of structure. Pure and Applied Chemistry. 1997. 69. P. 245-248. DOI: 10.1351/pac199769020245.

Katritzky A.R., Fara D.C., Petrukhin R.O., Tatham D.B., Maran U., Lomaka A., Karelson M. The Present Utility and Future Potential for Medicinal Chemistry of QSAR/QSPR with Whole Molecule Descriptors. Current Topic in Medici-nal Chemistry. 2002. 34. P. 1333-1356. DOI: 10.2174/1568026023392922.

Baskin I.I., Ait A.O., Halberstam N.M., Palyulin V.A., Alfimov M.V., Zefirov N.S. Application of Methodology of Artificial Neural Networks for Predicting the Properties of Sophisticated Molecular Systems: Prediction of the Long-Wave Absorption Band Position for Symmetric Cyanine Dyes. Doklady Physical Chemistry. 1997. 357(1-3). P. 353–355.

Baskin I.I., Palyulin V.A., Zefirov N.S. Neural networks in building QSAR models. Methods in Molecular Biology. 2008. 458. P. 137–158.

Tetko I.V. Neural Network Studies. 4. Introduction to Asso-ciative Neural Networks. J. Chem. Inf. Comput. Sci. 2002. 42. P. 717–728. DOI: 10.1021/ci010379o.

Vorberg S., Tetko I.V. Modeling the Biodegradability of Chemical Compounds Using the Online CHEmical Modeling Environment (OCHEM). Molecular Informatics. 2014. 33. P. 73–85. DOI: 10.1002/minf.201300030.

Puzyn T., Leszczynski J., Cronin M.T.D. Recent Advances in QSAR Studies: Methods and Applications (Challenges and Advances in Computational Chemistry and Physics, 8). Springer Science+Business Media B.V. 2010.

Pineda Flores S.D., Martin-Noble G.C., Phillips R.L., Schrier J. Bio-Inspired Electroactive Organic Molecules for Aqueous Redox Flow Batteries. 1. Thiophenoquinones. J. Phys. Chem. C 2015. 119. P. 21800–21809. DOI: 10.1021/acs.jpcc.5b05346.

Er S., Suh C., Marshak M.P., Aspuru-Guzik A. Computa-tional design of molecules for an all-quinone redox flow bat-tery. Chem. Sci. 6 (2015) 885–893. DOI: 10.1039/C4SC03030C.

Huskinson B., Marshak M.P., Suh C., Er S., Gerhardt M.R., Galvin C.J., Chen X., Aspuru-Guzik A., Gordon R.G., Aziz M.J. A metal-free organic-inorganic aqueous flow battery. Nature. 2014. 505. P. 195–198. DOI: 10.1038/nature12909.

Chen E.C.M., Wentworth W.E. A comparison of experi-mental determinations of electron affinities of pi charge trans-fer complex acceptors. J. Chem. Phys. 1975. 63.

P. 3183-3191. DOI: 10.1063/1.431807.

Hilal S.H., Carreira L.A., Karickhoff S.W., Melton C.M. Estimation of Electron Affinity Based on Structure Activity Relationships. Quant. Struct.-Act. Relat. 1993. 12. P. 389–396. DOI: 10.1002/qsar.19930120407.

Fukuda E.K., McIver R.T. Relative electron affinities of substituted benzophenones, nitrobenzenes, and quinines. J. Am. Chem. Soc. 1985. 107. P. 2291–2296. DOI: 10.1021/ja00294a014.

Gurvich L.V., Vedeneyev V., Kondrat'yev V.N., Medvedev V.A., Vedeneyev Y.L. Bond energies, ionization potentials and electron affinities. New York: St. Martins Press. 1966.

Frontana C., A´lvaro V.-M., Garza J., Vargas R., Ignacio G. Substituent Effect on a Family of Quinones in Aprotic Solvents: An Experimental and Theoretical Approach.

J. Phys. Chem. A. 2006. 110. P. 9411–9419. DOI: 10.1021/jp060836+.

Zhu X.Q., Wang C.H. Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. J. Org. Chem. 2010. 75. P. 5037–5047. DOI: 10.1021/jo100735s.

Anouar E.H., Osman C.P., Weber J.-F.F., Ismail N.H. UV/Visible spectra of a series of natural and synthesised an-thraquinones: experimental and quantum chemical approaches. SpringerPlus. 2014. 3. P. 1-12. DOI: 10.1186/2193-1801-3-233.

Bradbury S.P., Mekenyan O., Veith G.D., Zaharieva N. SAR Models for Futile Metabolism. One-Electron Reduction of Quinones, Phenols and Nitrobenzenes. SAR and QSAR in Environmental Research. 1995. 4. P. 109–124. DOI: 10.1080/10629369508029908.

Kim K.C., Liu T., Lee S.W., Jang S.S. First-Principles Density Functional Theory Modeling of Li Binding: Thermo-dynamics and Redox Properties of Quinone Derivatives for Lithium-Ion Batteries. J. Am. Chem. Soc. 2016. 138.

P. 2374–2382. DOI: 10.1021/jacs.5b13279.

Evans D.H. One-electron and two-electron transfers in elec-trochemistry and homogeneous solution reactions. Chem. Rev. 2008. 108. P. 2113–2144. DOI: 10.1021/cr068066l.

Eberle B., Hubner O., Ziesak A., Kaifer E., Himmel H.-J. What Makes a Strong Organic Electron Donor (or Acceptor)? Chemistry. 2015. 21. P. 8578–8590. DOI: 10.1002/chem.201406597.

Miranda-Quintana R.A., Martinez Gonzalez M., Ayers P.W. Electronegativity and redox reactions. Phys. Chem. Chem. Phys. 2016. 18. P. 1-23. DOI: 10.1039/C6CP03213C.

Zhan C.G., Nichols J.A., Dixon D.A. Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy. Molecular Properties from Density Func-tional Theory Orbital Energies. J. Phys. Chem. A. 2003. 107. P. 4184–4195. DOI: 10.1021/jp0225774.

Parker V.D. Energetics of Electrode Reactions. Ⅱ. The Rela-tionship between Redox Potentials. Ionization Potentials, Elec-tron Affinties, and Solvation Energies of Aromatic Hydrocar-bons. J. Am. Chem. Soc. 1976. 1. P. 98–103.

Merkel P.B., Luo P., Dinnocenzo J.P., Farid S. Accurate oxidation potentials of benzene and biphenyl derivatives via electron-transfer equilibria and transient kinetics. J. Org. Chem. 2009. 74. P. 5163–5173. DOI: 10.1021/jo9011267.

Winget P., Weber E.J., Cramer C.J., Truhlar D.G. Com-putational electrochemistry. Aqueous one-electron oxidation potentials for substituted anilines. Phys. Chem. Chem. Phys. 2000. 2. P. 1231–1239. DOI: 10.1039/a909076b.

Tabner B.J., Yandle J.R. A Correlation of Half-wave Re-duction Potentials with Theoretical Calculations for Some Ni-trogen-containing Heteromolecules in Dimethylformamide. J. Chem. Soc. (A) 1968. P. 381–388. DOI: 10.1039/j19680000381.

Nau W.M., Adam W., Klapstein D., Sahin C., Walter H. Correlation of Oxidation and Ionization Potentials for Azo-alkanes. J. Org. Chem. 1997. 62. P. 5128–5132. DOI: 10.1021/jo970574v.

Davis A.P., Fry A.J. Experimental and computed absolute redox potentials of polycyclic aromatic hydrocarbons are high-ly linearly correlated over a wide range of structures and po-tentials. J. Phys. Chem. A. 2010. 114. P. 12299–12304. DOI: 10.1021/jp106088n.

Griffith O.L., Anthony J.E., Jones A.G., Shu Y., Lichtenberger D.L. Substituent effects on the electronic characteristics of pentacene derivatives for organic electronic devices: dioxolane-substituted pentacene derivatives with triisopropylsilylethynyl functional groups. J. Am. Chem. Soc. 2012. 134. P. 14185–14194. DOI: 10.1021/ja3056672.

Ruzié C., Karpinska J., Laurent A., Sanguinet L., Hunter S., Anthopoulos T.D., Lemaur V., Cornil J., Kennedy A.R., Fenwick O., Samorì P., Schweicher G., Chatto-padhyay B., Geerts Y.H. Design, synthesis, chemical stabil-ity, packing, cyclic voltammetry, ionisation potential, and charge transport of [1]benzothieno[3,2-b][1]benzothiophene derivatives. J. Mater. Chem. C. 2016. 4. P. 4863–4879. DOI: 10.1039/C6TC01409G.

Yokota Y., Mino Y., Kanai Y., Utsunomiya T., Imanishi A., Wolak M.A., Schlaf R., Fukui K.-I. Comparative Stud-ies of Photoelectron Spectroscopy and Voltammetry of Ferro-cene-Terminated Self-Assembled Monolayers Possessing Different Electron-Donating Abilities. J. Phys. Chem. C. 2014. 118. P. 10936–10943. DOI: 10.1021/jp5023899.

Chemaxon JChem. www.chemaxon.com/jchem.

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98. P. 5648. DOI: 10.1063/1.464913.

Olcari L. Ab initio molecular orbital theory. Inorg. Chim. Acta. 1986. 119. P. 234. DOI: 10.1016/S0020-1693(00)84345-5.

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery Jr. J. A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Nor-mand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Mar-tin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J. Fox, D.J. Gaussian 09. Revision A02. Gaussian, Inc. Wallingford CT. 2009.

Su N.Q., Zhang I.Y., Wu J., Xu X. Calculations of ioniza-tion energies and electron affinities for atoms and molecules. A comparative study with different methods. Front. Chem. China. 2011. 6. P. 269–279. DOI: 10.1007/s11458-011-0256-3.


Ссылки

  • На текущий момент ссылки отсутствуют.