СИНТЕЗ, СТРУКТУРА И КАТАЛИТИЧЕСКИЕ СВОЙСТВА НАНОСТРУКТУРНЫХ Pd МАТЕРИАЛОВ В КАТАЛИТИЧЕСКОЙ ГИДРОГЕНАЦИИ п-НИТРОАНИЛИНА

  • Valentin Yu. Doluda Тверской государственный технический университет
  • Alexander I. Sidorov Тверской государственный технический университет
  • Esther M. Sulman Тверской государственный технический университет
  • Adele R. Latypova Ивановский государственный химико-технологический университет
  • Dmitry V. Filippov Ивановский государственный химико-технологический университет
  • Olga V. Lefedova Ивановский государственный химико-технологический университет
Ключевые слова: катализ, палладий, оксид алюминия, кремнезем, углерод, гидрирование

Аннотация

The article is focused on development of palladium supported catalysts, investigation of their structure and catalytic properties and correlations of catalysts activity in hydrogenation of p-nitroaniline. A series of Pd supported catalysts were synthesized using Al2O3, SiO2 and activated carbon for Pd stabilization with active metal loading of 3, 4, 5 wt. %. Catalysts samples were synthesized using modified precipitation method, characterized by scanning electron microscopy, temperature programmed reduction, nitrogen physisorption, infrared spectroscopy and tested in p-nitroaniline catalytic hydrogenation process. The work shows efficient approach of functional materials obtainment in terms of catalysis application. Main advantages of such approach are cheapness and ease of implementation, which give the possibility to obtain functional materials right on the place of application. All chemicals used are of wide availability and no additional equipment is necessary. The Pd based catalysts supported on alumina, silica and activated carbon were tested in p-nitroaniline hydrogenation. Catalysts sample activity in p-nitroaniline hydrogenation process has strong correlation with metal dispersion and support acidity. The sample 5 wt.% Pd/γ-Al2O3 show the highest activity 4.6∙10-5 mol(H2)/s characterized by highest acidity and moderate metal dispersion. The comparison of the data of catalyst activity and the content of pores of various sizes showed the certain correlation. After the reaction of hydrogenation of 4-nitroaniline, the change in the pore sizes of the catalysts can provide indirect information about the supposed physical processes occurring on the surface of the catalyst. Strong correlation between catalyst structure and its activity in p-nitroaniline hydrogenation was found.

Литература

Nicolaou K.C. Catalyst: Synthetic Organic Chemistry as a Force for Good. Chem. 2016. V. 1. P. 331-338. DOI: 10.1016/j.chempr.2016.08.006.

Baig R.B.N., Varma R.S. Magnetically retrievable catalysts for organic synthesis. Chem. Commun. 2013. V. 49. P. 752-770. DOI: 10.1039/C2CC35663E.

Climent M.J., Corma A., Iborra S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2011. V. 111. P. 1072-1133. DOI: 10.1021/cr1002084.

Navneet Sharma, Himanshu Ojha, Ambika Bharadwaj, Dharam Pal Pathak, Rakesh Kumar Sharma. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 2015. V. 5. N 66. P. 53381-53403. DOI: 10.1039/C5RA06778B.

Santosh Bahadur Singh, Praveen Kumar Tandon. Vapor phase hydrogenation of nitrobenzene to aniline over carbon supported ruthenium catalysts. J. Nanosci. Nanotechnol. 2015. V. 15. P. 5403-5409. DOI: 10.1166/jnn.2015.9872

Zhao F., Ikushima Y., Arai M. Hydrogenation of nitrobenzene with supported platinum catalysts in supercritical carbon dioxide: effects of pressure, solvent, and metal particle size. J. Catal. 2004. V. 224. P. 479-483. DOI: 10.1016/j.jcat.2004.01.003.

Relvas J., Andrade R., Freire F.G., Lemos F., Araujo P., Pinho M.J., Nunes C.P., Ribeiro F.R. Liquid phase hydrogenation of nitrobenzene over an industrial Ni/SiO2 supported catalyst. Catal. Today. 2008. V. 133. P. 828-835. DOI: 10.1016/j.cattod.2007.11.050.

Figueras F., Coq B. Hydrogenation and hydrogenolysis of nitro-, nitroso-, azo-, azoxy- and other nitrogen-containing compounds on palladium. J. Molec. Catal. A: Chem. 2001. V. 173. N 1. P. 223-230. DOI: 10.1016/S1381-1169(01)00151-0.

Yu X., Wang M., Li H. Study on the nitrobenzene hydro-genation over a Pd-B/SiO2 amorphous catalyst. Appl. Catal. A: Gen. 2000. V. 202. N 1. P. 17-22. DOI: 10.1016/S0926-860X(00)00454-3.

Sudhakar D.M., lakshmi Kantam M., Ramineni K., Naveen Kumar S., Akula V. Vapour phase hydrogenation of nitrobenzene over metal (Ru, Ni, Pt, Pd) supported on Ca5(PO4)3(OH) catalysts. J. Nanosci. Nanotechnol. 2014. V. 53. N 7. P. 5403–5409. DOI: 10.1166/jnn.2015.9872.

Rogers S.M., Catlow C.R.A., Chan-Thaw C.E., Chutia A., Jian N., Palmer R.E., Perdjon M., Thetford A., Dimitratos N., Villa A., Wells P.P. Tandem site- and size-controlled pd nanoparticles for the directed hydrogenation of furfural. ACS Catal. 2017. V. 7. N 4. P. 2266-2274. DOI: 10.1021/acscatal.6b03190.

Sher shah M. S. A., Guin D., Sunkara M. Pd @ PEG-PU polymer networks: a convenient catalyst for hydrogenation and Suzuki coupling reactions. Mater. Chem. Phys. 2010. V. 124. N 1. P. 664-669. DOI: 10.1016/j.matchemphys.2010.07.031.

Makowski W., Sobczak J., Król A. Acetophenone hydro-genation on polymer–palladium catalysts. The effect of polymer matrix. Catal. Lett. 2004. V. 94. N 3–4. P. 143-156. DOI: 10.1023/B:CATL.0000020539.31128.d4.

Králik M., Vallušová Z., Major P., Takáčová A., Hronec M., Gašparovičová D. Hydrogenation of chloronitrobenzenes over Pd and Pt catalysts supported on cationic resins. Chem. Papers. 2014. V. 68. P. 1690-1700. DOI: 10.2478/s11696-014-0565-3.

Dai C., Liu F., Zhang W., Li Y., Ning C., Wang X., Zhang C. Deactivation study of Pd/Al2O3 catalyst for hydrogenation of benzonitrile in fixed-bed reactor. Appl. Catal. A: Gen. 2017. V. 538. P. 199-206. DOI: 10.1016/j.apcata.2017.03.030.

Komhom S., Mekasuwandumrong O., Praserthdam P., Panpranot J. Improvement of Pd/Al2O3 catalyst performance in selective acetylene hydrogenation using mixed phases Al2O3 support. Catal. Commun. 2008. V. 10. N 1. P. 86-91. DOI: 10.1016/j.catcom.2008.07.039.

Boudjahem A.-G., Redjel A., Mokrane T. Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Indust. Eng. Chem. 2012. V. 18. N 1. P. 303-308. DOI: 10.1016/j.jiec.2011.11.038.

Horváth A., Beck A, Koppány Z., Sárkány A., Guczi L. Solderived Pd/SiO2 catalyst: characterization and activity in benzene hydrogenation. J. Molec. Catal. A: Chem. 2002. V. 182-183. P. 295-302. DOI: 10.1016/S1381-1169(01)00480-0.

Song X., Wu Y., Pan D., Zhang J., Xu S., Gao L, Wei R., Xiao G. Functionalized DVB-based polymer catalysts for glycerol and CO2 catalytic conversion. J. CO2 Utilization. 2018. V. 28. P. 326-334. DOI: 10.1016/j.jcou.2018.10.015.

Luo Y., Xie W., Huang Y., Zhang T., Yang B., Liu Y., Zhou X., Zhang J. Polydimethylsiloxane sponge supported DMAP on polymer brushes: Highly efficient recyclable base catalyst and ligand in water. J. Catal. 2018. V. 367. P. 264. DOI: 10.1016/j.jcat.2018.09.015.

Tungler A., Szabados E. Overcoming problems at elaboration and scale-up of liquid-phase pd/c mediated catalytic hydrogenations in pharmaceutical production. Org. Proc. Res. Develop. 2016. V. 20. N 7. P. 1246-1251. DOI: 10.1021/acs.oprd.6b00073.

Wichner N.M., Beckers J., Rothenberg G., Koller H. Preventing sintering of Au and Ag nanoparticles in silica-based hybrid gels using phenyl spacer groups. J. Mater. Chem. 2010. V. 20. P. 3840-3847. DOI: 10.1039/C000105H.

Rudolf C., Mazilu I., Chirieac A., Dragoi B., Abi-Ghaida F. Ungureanu A., Mehdi A., Dumitriu E. Copper nano-particles supported on polyether-functionalized mesoporous silica. synthesis and application as hydrogenation cat-alysts. Environ. Eng. Manag. J. 2015. V. 14. P. 399-408. DOI: 10.30638/eemj.2015.041.

Tong S.B., O'Driscoll K.F., Rempel G.L. Kinetics of nitrobenzene hydrogenation using a gel entrapped palladi-um catalyst. Canad. J. Chem. Eng. 1978. V. 56. P. 340-345. DOI: 10.1002/cjce.5450560311.

Okajima I., Okamoto H., Sako T. Recycling fiber-reinforced plastic using supercritical acetone. Polym. Degrad. Stabil. 2019. V. 163. P. 1-6. DOI: 10.1016/j.polymdegradstab.2019.02.018.

Vemu Vara Prasad, Sowjanya Talupula. A review on reinforcement of basalt and aramid (Kevlar 129) fibers. Mater. Today: proceed. 2018. V. 5. N 2. P. 5993-5998. DOI: 10.1016/ j.matpr.2017.12.202.

Coq B., Figueras F. Structure - activity relationships in catalysis by metals: some aspects of particle size, bimetallic and supports effects. Coord. Chem. Rev. 1998. V. 178. P. 1753-1783. DOI: 10.1016/S0010-8545(98)00058-7.

McMillan L., Gilpin L.F., Baker J., Brennan C., Hall A., Lundie D.T., Lennon D. The application of supported pal-ladium catalysts for the hydrogenation of aromatic nitriles. J. Molec. Catal. A: Chem. 2016. V. 411. P. 239-246. DOI: 10.1016/j.molcata.2015.10.028.

Lempers H.E.B., Sheldon R.A. The stability of chromium in CrAPO-5, CrAPO-11, and CrS-1 during liquid phase oxidations. J. Catal. 1998. V. 175. P. 62-69. DOI: 10.1006/jcat.1998.1979.

Lazar A., Silpa S., Vinod C.P., Singh A.P. A heterogeneous route for transfer hydrogenation reactions of ketones using Ru(II)Cymene complex over modified benzene-organosilica (PMOB). Molec. Catal. 2017. V. 440. P. 66-74. DOI: 10.1016/ j.mcat.2017.07.018.

Ivanova A., Slavinskaya E., Gulyaev R., Zaikovskii V., Stonkus O., Danilova I., Plyasova L., Polukhina I., Boronin A. Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B: Environ. 2010. V. 97. P. 57-71. DOI: 10.1016/j.apcatb.2010.03.024.

Zheng Q., Farrauto R., Deeba M. Part II: Oxidative thermal aging of Pd/Al2O3 and Pd/CexOy-ZrO2 in automotive three way catalysts: the effects of fuel shutoff and attempted fuel rich regeneration. Catalysts. 2015. V. 5. P. 1797-1814. DOI: 10.3390/catal5041797.

Nag N.K. A Study on the formation of palladium hydride in a carbon-supported palladium catalyst. J. Phys. Chem. B. 2001. V. 105. P. 5945-5949. DOI: 10.1021/jp004535q.

Gil S., Liotta L., Pantaleo G., Ousmane M., Retailleau-Mevel L., Giroir-Fendler A. Catalytic oxidation of propene over Pd catalysts supported on CeO2, TiO2, Al2O3 and M/Al2O3 oxides (M=Ce, Ti, Fe, Mn). Catalysts. 2015. V. 5. P. 671-689. DOI: 10.3390/catal5020671.

Zhu H., Qin Z., Shan W., Shen W., Wang J. Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents. J. Catal. 2004. V. 225. P. 267-277. DOI: 10.1016/j.jcat.2004.04.006 (2004).

Thompson S.T. Palladium-rhenium catalysts for selective hydrogenation of furfural: evidence for an optimum surface composition. ACS Catal. 2016. V. 6. N 11. P. 7438–7447. DOI: 10.1021/acscatal.6b01398.

Kumar S., Malik M.M., Purohit R. Influence of tool revolving on mechanical properties of friction stir welded 5083aluminum alloy. Mater. Today: Proceed. 2017. V. 4. P. 350-335. DOI: 10.1016/j.matpr.2017.01.029.

Han W., Jia Y., Yao N., Yang W, He M., Xiong G. A novel template-free sol–gel synthesis of silica materials with mesoporous structures and zeolitic walls. J. Sol-Gel Sci. Technol. 2007. V. 43. P. 205-211. DOI: 10.1007/s10971-007-1564-4.

Saikia B., Parthasarathy G. Fourier transform infrared spectroscopic characterization of kaolinite from assam and meghalaya, Northeastern India. J. Mod. Phys. 2010. V. 1. P. 206-210. DOI: 10.4236/jmp.2010.14031.

Jafar Tafreshi M., Masoomi Z. Infrared spectroscopy studies on solgel prepared alumina powders. Mater. Sci. (Medžiagotyra). 2015. V. 21. N 1. P. 1392–1320. DOI: 10.5755/j01.ms.21.1.4872.

Chukin G.D., Malevich V.I. Infrared spectra of silica. J. Appl. Spectrosc. 1977. V. 26. N 2. P. 223-229. DOI: 10.1007/BF00615613.

Cao J., Xiao G., Xu X., Shen D., Jin B. Study on carbon-ization of lignin by TG-FTIR and high-temperature carbon-ization reactor. Fuel Proc. Technol. 2013. V. 106. P. 41-47. DOI: 10.1016/j.fuproc.2012.06.016.

He X., Liu X., Nie B., Song D. FTIR and Raman spectroscopy char-acterization of functional groups in various rank coals. Fuel. 2017. V. 206. P. 555-563. DOI: 10.1016/j.fuel.2017.05.101.

Ganiyu S.A., Alhooshani K., Ali S.A. Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity. Appl. Catal. B: Environ. 2017. V. 203. P. 428-441. DOI: 10.1016/j.apcatb.2016.10.052.

Ortega-Dominguez R.A., Vargas-Villagran H., Penaloza-Orta C., Saavedra-Rubio K., Bokhimi X., Klimova T.E. A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts. Fuel. 2017. V. 198. P. 110-122. DOI: 10.1016/j.fuel.2016.12.037.

Опубликован
2019-07-08
Как цитировать
Doluda, V. Y., Sidorov, A. I., Sulman, E. M., Latypova, A. R., Filippov, D. V., & Lefedova, O. V. (2019). СИНТЕЗ, СТРУКТУРА И КАТАЛИТИЧЕСКИЕ СВОЙСТВА НАНОСТРУКТУРНЫХ Pd МАТЕРИАЛОВ В КАТАЛИТИЧЕСКОЙ ГИДРОГЕНАЦИИ п-НИТРОАНИЛИНА. ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. СЕРИЯ «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ», 62(6), 60-68. https://doi.org/10.6060/ivkkt.20196206.6041
Раздел
ХИМИЯ неорганич., органич., аналитич., физич., коллоидная, высокомол. соединений

Наиболее читаемые статьи этого автора (авторов)