The conformational behavior and structure of monosubstituted 1,3,5-trisilacyclohexanes. Part II: 1-Methoxy-1,3,5-trisilacyclohexane

Liubov E. Kuzmina,[#] Tran Dinh Phien,[&] Ingvar Arnason,[†] Nanna R. Jonsdottir,[†] Sergey A. Shlykov^{*#}

[#] Ivanovo State University of Chemistry and Technology, Sheremetievskiy ave., 7, Ivanovo 153000, Russian Federation

[&] Vietnam-Russia Tropical Center. 63 Nguyen Van Huyen, Cau Giay, Ha Noi, Vietnam

† Science Institute, University of Iceland, Dunhaga 3, IS-107Reykjavik, Iceland.

Оглавление

Cartesian coordinates (Å) and absolute energies (a.u.) for 1-Methoxy-1,3,5- trisilacyclohexane of computed structures. The structures were confirmed to be minima
through vibrational analysis
NMR Spectrum of 1-Methoxy-1,3,5-trisilacyclohexane
Figure S1. ¹ H NMR Spectrum of compound 1
Figure S2. ¹³ C NMR Spectrum of compound 17
Figure S3. ¹³ C NMR Spectra of compound 1 at low temperatures
Experimental Section
Figure S4. Total electron scattering intensity curves and experimental background lines of 1- Methoxy-1,3,5-trisilacyclohexane for short and long nozzle-to-plate distances GED/MS
Table S1(a): Conditions of the synchronous GED/MS experiments
Table S1(b): Relative ion currents of major peaks in the mass spectra (EI, 50 eV) recordedduring synchronous GED/MS experiments10
Computational details
Table S2: Experimental total intensities and background for 1-Methoxy-1,3,5-trisilacyclohexane
Table S3: Z-matrix used in the refinement of 1-Methoxy-1,3,5-trisilacyclohexane
Table S4: Interatomic r_a distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used
Table S5: Interatomic r_a distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used
Table S6: Interatomic ra distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used
Table S7: Matrix of correlation coefficients between refined parameters. 23
REFERENCES

Cartesian coordinates (Å) and absolute energies (a.u.) for 1-Methoxy-1,3,5-trisilacyclohexane of computed structures. The structures were confirmed to be minima through vibrational analysis.

M062X/6-311G**

 $\mathbf{I}(g\text{-}\mathbf{A}\mathbf{x})$

E(RM062X) = -1104.54563839

14	-1.325074000	0.645559000	0.158682000
6	-0.121519000	0.885250000	1.559368000
6	-0.494075000	1.060906000	-1.469308000
14	1.429141000	-0.170160000	1.367781000
14	1.028793000	-0.006142000	-1.775047000
6	2.199955000	0.181034000	-0.315525000
1	-2.571099000	1.438335000	0.326174000
8	-1.702191000	-0.973006000	0.178185000
6	-2.495750000	-1.571285000	-0.825211000
1	-3.458080000	-1.057537000	-0.936520000
1	-2.686048000	-2.605721000	-0.540104000
1	-1.979782000	-1.566956000	-1.792240000
1	-0.611674000	0.653451000	2.509345000
1	0.176260000	1.939145000	1.600632000
1	-1.200230000	0.958627000	-2.299476000
1	-0.186058000	2.112859000	-1.450715000
1	1.084187000	-1.606236000	1.472415000
1	2.400705000	0.154459000	2.442636000
1	0.616292000	-1.425753000	-1.909699000
1	1.701421000	0.393659000	-3.036749000
1	3.071350000	-0.465095000	-0.458437000
1	2.573933000	1.211588000	-0.310804000

M062X/6-311G**

III (g-Eq)

E(RM062X) = -1104.54495110

14	-1.060820000	-0.329014000	-0.089075000
6	-0.231910000	-0.229366000	1.588498000
6	-0.183329000	0.788258000	-1.292383000
14	1.614368000	-0.595607000	1.531221000
14	1.665131000	0.460601000	-1.426511000
6	2.428924000	0.560514000	0.290636000
8	-2.646038000	0.157192000	-0.012342000
1	-1.008999000	-1.742278000	-0.550388000
6	-3.577918000	-0.470539000	0.843935000
1	-3.345453000	-0.272699000	1.896189000
1	-3.600552000	-1.555679000	0.687852000
1	-4.567407000	-0.069267000	0.625718000
1	-0.711622000	-0.917015000	2.292604000
1	-0.370192000	0.783527000	1.985518000
1	-0.650451000	0.703156000	-2.277830000
1	-0.331023000	1.822269000	-0.959913000
1	1.820143000	-1.999166000	1.091841000
1	2.221006000	-0.441686000	2.876325000
1	1.885272000	-0.902291000	-1.973313000
1	2.301579000	1.434974000	-2.346078000
1	3.499393000	0.342524000	0.231473000
1	2.335632000	1.589266000	0.656566000

M062X/6-311G**

IV (tr-Eq)

E(RM062X) = -1104.54447475

14	-0.960944000	-0.979735000	0.248868000
6	-0.094300000	-0.290128000	1.760936000
6	-0.467413000	0.075113000	-1.219698000
14	1.780721000	-0.254507000	1.589570000
14	1.393276000	0.125881000	-1.505344000
6	2.231150000	0.746650000	0.061156000
8	-2.607327000	-1.021414000	0.449774000
1	-0.567422000	-2.386458000	0.027308000
6	-3.381955000	0.133829000	0.687087000
1	-4.424845000	-0.168087000	0.781822000
1	-3.301850000	0.847456000	-0.141143000
1	-3.080918000	0.635091000	1.614327000
1	-0.373135000	-0.871181000	2.645394000
1	-0.433042000	0.738892000	1.933318000
1	-0.969275000	-0.287490000	-2.122088000
1	-0.807829000	1.104870000	-1.055197000
1	2.284798000	-1.641462000	1.425918000
1	2.408146000	0.324560000	2.802747000
1	1.881030000	-1.244014000	-1.805277000
1	1.723609000	0.996748000	-2.660017000
1	3.316658000	0.743802000	-0.075095000
1	1.936605000	1.789256000	0.226176000

Figure S1. ¹H NMR Spectrum of compound 1

Figure S2. ¹³C NMR Spectrum of compound 1

Figure S3. ¹³C NMR Spectra of compound 1 at low temperatures

Experimental Section

Figure S4. Total electron scattering intensity curves and experimental background lines of 1-Methoxy-1,3,5-trisilacyclohexane for short and long nozzle-to-plate distances GED/MS

The diffraction patterns of compounds 1 were obtained in a synchronous gas-phase electron diffraction and mass-spectrometric experiment carried out using the *EMR-100/APDM-1* unit [1, 2]. The conditions of the GED/MS experiments are listed in Ошибка! Источник ссылки не найден.

Inlet system with dosing valve was applied though which a vapour flow of the compound passed into a stainless steel outlet effusion cell filled with shavings of the same material. The cell had a cylindrical nozzle of $0.6 \times 1.2 \text{ mm}^2$ size (diameter × length) and were kept at 287 (3) K in the course of the experiments for compounds **1**. Diffraction patterns were recorded on MACO EM/EMS photographic films of $9x12 \text{ cm}^2$.

Accurate wavelengths of the electrons were calibrated using polycrystalline ZnO. The two camera distances resulted in diffraction patterns in the s-range for compounds of 1.9 to 13.8 Å⁻¹ and 3.3 to 25.7 Å⁻¹ with a step size of 0.1 Å⁻¹, where $s=(4\pi/\lambda)\sin(\theta/2)$, λ is electron wavelength and θ is scattering angle, respectively. The optical densities of the diffraction patterns were measured by a computer controlled MD-100 (Carl Zeiss, Jena) microdensitometer [3] with a step size of 0.1 mm. The molecular scattering function, sM(s), was evaluated as

$$sM(s) = (I(s)/G(s)-1)s,$$
 (1)

where I(s) is the total electron scattering intensity, G(s) the experimental background. A leastsquares analysis of the scattering intensities was performed using a modified in Ivanovo version of the program KCED-35 [4] by minimizing an agreement functional R_f expressed as:

$$R_{f} = 100 \left[\frac{\sum_{i}^{n} \omega_{i} [s_{i} M_{\text{exp.}}(s_{i}) - k s_{i} M_{\text{theor.}}(s_{i})]^{2}}{\sum_{i}^{n} \omega_{i} [s_{i} M_{\text{exp.}}(s_{i})]^{2}} \right]^{1/2},$$
(2)

where: ω_i – weight function; k– scale coefficient, k= $s_i M_{exp.}(s_i)/s_i M_{theor.}(s_i)$, $s_i M_{exp.}(s_i)$, $s_i M_{theor.}(s_i)$ – experimental and theoretical molecular scattering intensities, respectively.

Compound	1-Methoxy-1,3,	oxy-1,3,5-trisilacyclohexane		
Camera distance	Long	Short		
Nozzle-to-plate distance, mm	598	338		
Number of recorded films	6 ^c	6 ^c		
Primary electron beam current, µA	0.7	1.3		
Accelerating voltage ^a , kV	80.5	81.9		
Temperature of effusion cell, K	288(4)	285(3)		
Wavelength of electrons ^b , Å	0.04161(5)	0.04123(5)		
Exposure time, s	80	120		
Residual gas pressure, Torr, in				
-diffraction chamber	$1.5 \cdot 10^{-6}$	$1.5 \cdot 10^{-6}$		
-mass spectrometric block	$5.5 \cdot 10^{-7}$	$5.3 \cdot 10^{-7}$		

Table S1(a): Conditions of the synchronous GED/MS experiments

^a Approximate value

^b Accurate wavelengths of electrons were calibrated using diffractions pattern of polycrystalline ZnO

^c 6 for and 3 photographic films for the long and short camera distances, respectively, were taken for further procedures

during synem onous OLD/1015 experiments								
m/z, Da	Relative in	ntensity, %	Assignment					
	Long camera	Short camera						
162	100	100	$Si_3C_4H_{14}O^+$, $[M]^+$					
147	57	62	$Si_3C_3H_{11}O^+$, [M-Me] ⁺					
131	72	53	$Si_3C_3H_{11}^+$, [M-OMe] ⁺					
101	30	23	$Si_2C_3H_9^+$					
85	26	19	$Si_2C_2H_5^+$					
69	22	16	$SiC_3H_5^+$					
58	45	49	$SiC_2H_6^+$					
43	22	20	SiCH ₃ ⁺					

Table S1(b): Relative ion currents of major peaks in the mass spectra (EI, 50 eV) recorded during synchronous GED/MS experiments

Computational details

All calculations of molecule **1** were performed with Gaussian 09 program suite [5]. The geometry and vibrational calculations were performed using DFT (with B3LYP, B3LYP-D3 and M062X functionals) and MP2 methods with the 6-311G**, cc-pVTZ basic sets. The potential energy surface (PES) were obtained by scanning of ring conversion were performed at the M062X/6-311G** level from equatorial and axial forms.

Table S2: Experimental total intensities and background for 1-Methoxy-1,3,5-trisilacyclohexane

I(s) long camera s= 1.2 to 16.1 Å⁻¹; step 0.1 Å⁻¹; λ = 0.04160859 Å, sequence in rows

1.44682	1.24436	1.09361	0.98826	0.91488	0.85651	0.82042
0.75921	0.72643	0.69203	0.65429	0.61513	0.57438	0.53703
0.47412	0.45166	0.43374	0.42346	0.41616	0.41218	0.41224
0.42258	0.43177	0.44108	0.45005	0.45798	0.46297	0.46436
0.45816	0.44989	0.43938	0.42754	0.41447	0.40084	0.38787
0.36607	0.35743	0.35092	0.34546	0.34221	0.33947	0.33823
0.33946	0.34100	0.34281	0.34528	0.34748	0.35033	0.35331
0.35718	0.35851	0.36000	0.36059	0.36048	0.36006	0.35933
0.35613	0.35606	0.35483	0.35451	0.35454	0.35418	0.35402
0.35243	0.35028	0.34760	0.34449	0.33967	0.33621	0.33186
0.32498	0.32296	0.32256	0.32396	0.32625	0.33016	0.33443
0.34506	0.35014	0.35396	0.35772	0.35980	0.36119	0.36184
0.35990	0.35827	0.35524	0.35270	0.34976	0.34713	0.34493
0.34272	0.34297	0.34370	0.34455	0.34596	0.34760	0.34916
0.35179	0.35239	0.35314	0.35351	0.35310	0.35310	0.35300
0.35415	0.35507	0.35611	0.35891	0.36116	0.36380	0.36635
0.37111	0.37230	0.37307	0.37355	0.37283	0.37162	0.37059
0.36751	0.36583	0.36590	0.36439	0.36449	0.36425	0.36444
0.36676	0.36858	0.36965	0.37151	0.37345		
	1.44682 0.75921 0.47412 0.42258 0.45816 0.36607 0.33946 0.35718 0.35613 0.35243 0.32498 0.34506 0.35990 0.34272 0.35179 0.35415 0.37111 0.36751 0.36676	1.446821.244360.759210.726430.474120.451660.422580.431770.458160.449890.366070.357430.354160.341000.357180.358510.356130.358510.352430.350280.324980.322960.345060.350140.359900.358270.342720.342970.351790.352390.354150.355070.371110.372300.367510.365830.366760.36858	1.446821.244361.093610.759210.726430.692030.474120.451660.433740.422580.431770.441080.458160.449890.439380.366070.357430.350920.339460.341000.342810.357180.358510.360000.356130.356060.354830.352430.350280.347600.324980.322960.322560.345060.358270.353960.359900.358270.352430.351790.352390.351140.351790.355070.356110.371110.372300.373070.367510.365830.36590	1.446821.244361.093610.988260.759210.726430.692030.654290.474120.451660.433740.423460.422580.431770.441080.450050.458160.449890.439380.427540.366070.357430.350920.345460.339460.341000.342810.345280.357180.358510.360000.360590.356130.356060.354830.354510.352430.350280.347600.344490.324980.322960.322560.323960.345060.358270.353240.352700.342720.342970.343700.344550.351790.352390.353140.353510.354150.355070.356110.358910.371110.372300.373070.374550.366760.368580.369650.37151	1.446821.244361.093610.988260.914880.759210.726430.692030.654290.615130.474120.451660.433740.423460.416160.422580.431770.441080.450050.457980.458160.449890.439380.427540.414470.366070.357430.350920.345460.342210.339460.341000.342810.345280.347480.357180.356060.354830.354510.360480.356130.356060.354830.354510.354540.352430.350280.347600.344490.339670.324980.322960.322560.323960.326250.345060.350140.353960.357720.359800.359900.358270.355240.352700.349760.351790.352390.351140.353510.351100.354150.355070.356110.358910.361160.371110.372300.373070.373550.372830.366760.368580.369650.371510.37345	1.446821.244361.093610.988260.914880.856510.759210.726430.692030.654290.615130.574380.474120.451660.433740.423460.416160.412180.422580.431770.441080.450050.457980.462970.458160.449890.439380.427540.414470.400840.366070.357430.350920.345460.342210.339470.339460.341000.342810.345280.347480.350330.357180.358510.360000.360590.360480.360060.356130.350280.347600.344490.339670.336210.324980.322960.322560.323960.326250.330160.345060.358270.355240.357720.359800.361190.359900.358270.355240.352700.349760.347130.342720.342970.353140.353510.35100.353100.351790.352390.35110.358910.361160.363800.371110.372300.373070.373550.372830.371620.366760.368580.369650.371510.373450.37455

I(s) short camera s= 2.5 to 28.8 Å⁻¹; step 0.1 Å⁻¹; λ = 0.04122798 Å, sequence in rows

2.68315	2.58520	2.44349	2.29785	2.16278	2.03765	1.91853	1.80204
1.73062	1.66648	1.62295	1.58594	1.56255	1.54248	1.52308	1.50987
1.48229	1.45686	1.41440	1.36891	1.31632	1.25380	1.19122	1.12402
1.06128	0.99551	0.93955	0.88936	0.84642	0.80908	0.77355	0.75085
0.73058	0.71331	0.69642	0.68315	0.67210	0.66136	0.65482	0.64881
0.64343	0.63671	0.63308	0.62907	0.62523	0.62094	0.61536	0.60965
0.60382	0.59734	0.58898	0.58096	0.57166	0.56536	0.55761	0.55167
0.54643	0.54132	0.53516	0.52976	0.52532	0.51831	0.51206	0.50378
0.49471	0.48563	0.47579	0.46744	0.45997	0.45421	0.45041	0.44834
0.44950	0.45111	0.45500	0.45873	0.46311	0.46776	0.47102	0.47304
0.47363	0.47424	0.47221	0.47090	0.46769	0.46212	0.45765	0.45162
0.44666	0.44063	0.43580	0.43072	0.42746	0.42529	0.42316	0.42270
0.42150	0.42110	0.42205	0.42256	0.42228	0.42141	0.42086	0.41828
0.41701	0.41397	0.41199	0.41007	0.40958	0.40852	0.40873	0.40960
0.41156	0.41310	0.41440	0.41592	0.41697	0.41799	0.41732	0.41645
0.41406	0.41160	0.40805	0.40461	0.40057	0.39553	0.39237	0.38895
0.38535	0.38317	0.38171	0.37950	0.37863	0.37845	0.37851	0.38010
0.38000	0.38111	0.38244	0.38258	0.38391	0.38365	0.38469	0.38437
0.38415	0.38412	0.38398	0.38373	0.38208	0.38282	0.38230	0.38268
0.38187	0.38164	0.38128	0.38058	0.37992	0.37881	0.37804	0.37769
0.37640	0.37519	0.37375	0.37235	0.37130	0.37015	0.36924	0.36878
0.36818	0.36839	0.36867	0.36895	0.37011	0.37089	0.37136	0.37287
0.37395	0.37472	0.37588	0.37669	0.37825	0.37853	0.37953	0.38038
0.38013	0.38032	0.37900	0.37969	0.37921	0.37803	0.37753	0.37699
0.37756	0.37746	0.37728	0.37733	0.37771	0.37775	0.37830	0.37854

0.37953	0.37982	0.38026	0.38167	0.38244	0.38363	0.38421	0.38498
0.38672	0.38736	0.38851	0.39009	0.39078	0.39233	0.39395	0.39472
0.39570	0.39702	0.39728	0.39778	0.39857	0.39918	0.39930	0.39958
0.40033	0.40040	0.40118	0.40177	0.40281	0.40303	0.40335	0.40506
0.40524	0.40601	0.40706	0.40873	0.41063	0.41184	0.41376	0.41550
0.41830	0.42043	0.42181	0.42349	0.42622	0.42734	0.42928	0.43098
0.43327	0.43549	0.43715	0.43769	0.44059	0.44223	0.44399	0.44479
0.44607	0.44871	0.45029	0.45173	0.45380	0.45586	0.45789	0.46011
Backgro	und G(s)	long cam	era, seque	ence in ro	WS		
1 62374	1 52144	1 38972	1 26405	1 15595	1 06456	0 98032	0 91819
0.86298	0.81242	0.76501	0.72217	0.68176	0.64471	0.60941	0.57953
0.55220	0.53239	0.51640	0.50273	0.49434	0.48538	0.47606	0.46735
0.45940	0.45176	0.44535	0.43865	0.43238	0.42694	0.42143	0.41589
0.41159	0.40729	0.40321	0.39967	0.39668	0.39349	0.38984	0.38619
0.38279	0.37906	0.37538	0.37231	0.36886	0.36650	0.36361	0.36141
0.36050	0.35888	0.35776	0.35651	0.35561	0.35422	0.35339	0.35272
0.35090	0.35004	0.34877	0.34827	0.34755	0.34682	0.34637	0.34606
0.34556	0.34435	0.34493	0.34421	0.34414	0.34427	0.34399	0.34405
0.34438	0.34416	0.34384	0.34372	0.34389	0.34289	0.34355	0.34329
0.34308	0.34298	0.34278	0.34294	0.34356	0.34375	0.34447	0.34470
0.34562	0.34621	0.34689	0.34684	0.34745	0.34726	0.34730	0.34754
0.34778	0.34736	0.34769	0.34716	0.34746	0.34751	0.34780	0.34824
0.34961	0.34974	0.35084	0.35171	0.35206	0.35248	0.35283	0.35304
0.35322	0.35353	0.35361	0.35426	0.35491	0.35502	0.35563	0.35606
0.35699	0.35736	0.35767	0.35760	0.35882	0.35912	0.35959	0.35995
0.36039	0.36097	0.36099	0.36121	0.36182	0.36194	0.36220	0.36317
0.36436	0.36509	0.36608	0.36873	0.36954	0.37160	0.37286	0.37405
0.37556	0.37688	0.37825	0.37846	0.37917	0.37976		

Background G(s) short camera, sequence in rows

2.81751	2.74942	2.64509	2.53902	2.44037	2.34290	2.23762	2.11755
2.03172	1.93651	1.84962	1.75831	1.67497	1.59298	1.51436	1.44837
1.37816	1.32148	1.26162	1.21108	1.16507	1.11917	1.07972	1.03994
1.00556	0.96717	0.93532	0.90513	0.87769	0.85140	0.82266	0.80386
0.78462	0.76615	0.74616	0.72856	0.71215	0.69521	0.68204	0.66901
0.65641	0.64250	0.63199	0.62165	0.61225	0.60343	0.59455	0.58677
0.58008	0.57377	0.56641	0.55979	0.55204	0.54702	0.54028	0.53493
0.53000	0.52515	0.51951	0.51514	0.51252	0.50842	0.50614	0.50287
0.49958	0.49667	0.49284	0.48984	0.48650	0.48324	0.48005	0.47660
0.47462	0.47147	0.46955	0.46685	0.46472	0.46326	0.46118	0.45893
0.45649	0.45532	0.45284	0.45221	0.45078	0.44795	0.44685	0.44465
0.44368	0.44152	0.44015	0.43785	0.43657	0.43544	0.43343	0.43228
0.42975	0.42769	0.42693	0.42589	0.42445	0.42292	0.42225	0.42000
0.41936	0.41705	0.41571	0.41409	0.41344	0.41164	0.41051	0.40949
0.40915	0.40814	0.40688	0.40603	0.40514	0.40481	0.40355	0.40288
0.40150	0.40077	0.39956	0.39888	0.39783	0.39581	0.39552	0.39466
0.39317	0.39259	0.39218	0.39043	0.38949	0.38877	0.38789	0.38825
0.38668	0.38622	0.38599	0.38465	0.38466	0.38330	0.38346	0.38250
0.38183	0.38150	0.38118	0.38079	0.37903	0.37964	0.37897	0.37919
0.37825	0.37791	0.37752	0.37690	0.37643	0.37565	0.37535	0.37560
0.37502	0.37462	0.37404	0.37352	0.37333	0.37296	0.37272	0.37276

0.37246	0.37275	0.37289	0.37280	0.3733	8 0.3734	0 0.3729	9 0.37353
0.37361	0.37342	0.37370	0.37375	0.37471	0.37457	0.37535	0.37620
0.37613	0.37669	0.37591	0.37724	0.37748	0.37708	0.37736	0.37756
0.37882	0.37933	0.37965	0.38011	0.38078	0.38101	0.38164	0.38187
0.38277	0.38289	0.38308	0.38419	0.38461	0.38539	0.38552	0.38581
0.38703	0.38712	0.38770	0.38871	0.38883	0.38984	0.39098	0.39135
0.39205	0.39321	0.39347	0.39413	0.39523	0.39629	0.39699	0.39795
0.39944	0.40027	0.40179	0.40309	0.40475	0.40550	0.40623	0.40822
0.40854	0.40934	0.41029	0.41175	0.41335	0.41417	0.41564	0.41688
0.41916	0.42076	0.42162	0.42281	0.42510	0.42584	0.42746	0.42891
0.43101	0.43311	0.43474	0.43531	0.43828	0.44006	0.44201	0.44306
0.44463	0.44761	0.44957	0.45143	0.45393	0.45644	0.45891	0.46156

Table S3: Z-matrix used in the refinement of 1-Methoxy-1,3,5-trisilacyclohexane

4

```
\mathbf{I} (g-Ax) conformer
```

1 Si						
2 C	1	rCSi1				
3 C	1	rCSi2	2	aCSiC		
4 Si	2	rCSi3	1	aSiCSi1	3	-dSiCSiC1
5 Si	3	rCSi4	1	aSiCSi2	2	dSiCSiC2
6 C	4	rCSi5	5	rCSi6	3	-dCSiSiC
7 H	1	rHSi1	2	aHSiC1	4	tHSiCSi1
8 O	1	rOSi	2	aOSiC	4	tOSiCSi
9 C	8	rCO	1	aCOSi	3	-tCOSiC
10 H	9	rCH1	8	aHCO1	1	-tHCOSi
11 H	9	rCH2	10	aHCH1	8	dHCHO1
12 H	9	rCH3	10	aHCH2	8	-dHCHO2
13 H	2	rCH4	4	aHCSi1	6	dHCSiC1
14 H	2	rCH5	13	aHCH3	4	-dHCHSi1
15 H	3	rCH6	5	aHCSi2	6	-dHCSiC2
16 H	3	rCH7	15	aHCH4	5	dHCHSi2
17 H	4	rHSi2	2	aHSiC2	1	-dHSiCSi2
18 H	4	rHSi3	17	aHSiH1	2	dHSiHC1
19 H	5	rHSi4	3	aHSiC3	1	dHSiCSi3
20 H	5	rHSi5	19	aHSiH2	3	-dHSiHC2
21 H	6	rCH8	4	aHCSi3	2	-dHCSiC3
22 H	6	rCH9	21	aHCH5	4	dHCHSi3

III (*g*-Eq) conformer

1 Si						
2 C	1	rCSi1				
3 C	1	rCSi2	2	aCSiC		
4 Si	2	rCSi3	1	aSiCSi1	3	-dSiCSiC1
5 Si	3	rCSi4	1	aSiCSi2	2	dSiCSiC2
6 C	4	rCSi5	5	rCSi6	3	-dCSiSiC
7 H	1	rHSi1	2	aHSiC1	4	tHSiCSi1
8 O	1	rOSi	2	aOSiC	4	tOSiCSi
9 C	8	rCO	1	aCOSi	3	-tCOSiC
10 H	9	rCH1	8	aHCO1	1	-tHCOSi
11 H	9	rCH2	10	aHCH1	8	dHCHO1
12 H	9	rCH3	10	aHCH2	8	-dHCHO2
13 H	2	rCH4	4	aHCSi1	6	dHCSiC1
14 H	2	rCH5	13	aHCH3	4	-dHCHSi1
15 H	3	rCH6	5	aHCSi2	6	-dHCSiC2
16 H	3	rCH7	15	aHCH4	5	dHCHSi2
17 H	4	rHSi2	2	aHSiC2	1	-dHSiCSi2
18 H	4	rHSi3	17	aHSiH1	2	dHSiHC1
19 H	5	rHSi4	3	aHSiC3	1	dHSiCSi3
20 H	5	rHSi5	19	aHSiH2	3	-dHSiHC2
21 H	6	rCH8	4	aHCSi3	2	-dHCSiC3
22 H	6	rCH9	21	aHCH5	4	dHCHSi3

4

IV (*tr*-Eq) conformer

1 Si						
2 C	1	rCSi1				
3 C	1	rCSi2	2	aCSiC		
4 Si	2	rCSi3	1	aSiCSi1	3	-dSiCSiC1
5 Si	3	rCSi4	1	aSiCSi2	2	dSiCSiC2
6 C	4	rCSi5	5	rCSi6	3	-dCSiSiC 4
7 H	1	rHSi1	2	aHSiC1	4	tHSiCSi1
8 O	1	rOSi	2	aOSiC	4	tOSiCSi
9 C	8	rCO	1	aCOSi	3	-tCOSiC
10 H	9	rCH1	8	aHCO1	1	-tHCOSi
11 H	9	rCH2	10	aHCH1	8	dHCHO1
12 H	9	rCH3	10	aHCH2	8	-dHCHO2
13 H	2	rCH4	4	aHCSi1	6	dHCSiC1
14 H	2	rCH5	13	aHCH3	4	-dHCHSi1
15 H	3	rCH6	5	aHCSi2	6	-dHCSiC2
16 H	3	rCH7	15	aHCH4	5	dHCHSi2
17 H	4	rHSi2	2	aHSiC2	1	-dHSiCSi2
18 H	4	rHSi3	17	aHSiH1	2	dHSiHC1
19 H	5	rHSi4	3	aHSiC3	1	dHSiCSi3
20 H	5	rHSi5	19	aHSiH2	3	-dHSiHC2
21 H	6	rCH8	4	aHCSi3	2	-dHCSiC3
22 H	6	rCH9	21	aHCH5	4	dHCHSi3

Table S4: Interatomic r_a distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used.

At1	At2	r _a	1	r _{h1} -r _a	Gu	At1	At2	r _a	1	r _{h1} -r _a	Gu
C9	H11	1.078592	0.078601	0.001500	100	C3	Si4	3.648193	0.103212	0.012100	105
C2	H13	1.082260	0.078807	0.001900	100	H17	H22	3.629776	0.153962	0.027800	105
C6	H21	1.082624	0.078807	0.001900	100	H19	H22	3.616027	0.153748	0.027600	105
C3	H15	1.083108	0.078910	0.001900	100	H16	H19	3.640460	0.153748	0.026200	105
C2	H14	1.084275	0.079116	0.002000	100	H14	H17	3.645032	0.154176	0.026700	105
C9	H12	1.085019	0.079528	0.001400	100	C3	H10	3.645461	0.464135	0.074800	105
C3	H16	1.084619	0.079116	0.002000	100	H7	H12	3.430213	0.375804	0.061500	105
C6	H22	1.084764	0.079116	0.001900	100	08	H14	3.801755	0.120664	0.025800	105
C9	H10	1.085584	0.079631	0.001300	100	H11	H19	3.834502	0.633086	0.103600	105
08	C9	1.431041	0.059701	0.000600	101	08	H16	3.720692	0.121200	0.024000	105
Si4	H17	1.498308	0.111586	0.001700	101	Si1	H22	3.891324	0.234262	0.033300	105
Si5	H19	1.502229	0.112099	0.001600	101	Si4	H16	3.939974	0.232549	0.027900	105
Si5	H20	1.502323	0.112355	0.001700	101	Si5	C9	4.098733	0.282121	0.032100	105
Si4	H18	1.502580	0.112355	0.001600	101	Si5	H14	3.956169	0.240044	0.029600	105
Si1	H7	1.504094	0.112611	0.001600	101	C3	H13	3.979406	0.123769	0.023800	105
Si1	08	1.668949	0.072412	-0.000400	102	C2	H15	3.987011	0.124519	0.022300	105
H21	H22	1.728953	0.127713	0.010700	103	C3	H21	3.953814	0.124733	0.024700	105
H15	H16	1.728956	0.127713	0.010900	103	C2	H21	3.962969	0.124947	0.025100	105
H13	H14	1.734339	0.127612	0.010700	103	C6	H15	3.965584	0.124733	0.024100	105
H11	H12	1.748635	0.124667	0.009300	103	C6	H13	3.965166	0.124626	0.025200	105
H10	H11	1.749957	0.124769	0.009200	103	C6	08	4.123209	0.217271	0.037900	106
H10	H12	1.757447	0.124769	0.009300	103	H12	H16	4.020782	0.369487	-0.019300	105
Si1	C2	1.862141	0.052385	0.000400	103	H7	H11	3.907429	0.299787	0.082700	105
Si1	C3	1.874319	0.053197	0.000400	103	C2	C9	4.255570	0.078911	0.025300	106
Si5	C6	1.880360	0.053400	0.000600	103	H10	H19	4.402420	0.379321	0.109700	106
Si4	C6	1.884019	0.053603	0.000700	103	C2	H19	4.230261	0.199921	0.029700	106
C3	Si5	1.884468	0.053704	0.000300	103	H13	H16	4.180823	0.196574	0.036900	106
C2	Si4	1.885315	0.053704	0.000500	103	H11	H15	4.006268	0.335012	0.077800	105
08	HII	2.041263	0.102536	0.005300	103	HI4	HI5	4.190995	0.201330	0.035600	106
08	HI2	2.081396	0.102434	0.004700	103	09	HI/	4.549934	0.331586	0.056600	106
08	HIU	2.086213	0.102333	0.004800	103	HI6	H21	4.193950	0.199745	0.039700	106
HI9	H20	2.421413	0.140493	0.009500	104	C3	HI/	4.2/1203	0.196/50	0.029100	106
HI/	HI8	2.424950	0.140112	0.009500	104	HIJ	H22	4.186889	0.200185	0.038600	106
511	H14	2.420170	0.117267	0.010300	104	H14	H21	4.218049	0.200713	0.040200	100
SIJ S:1	П22	2.410400	0.11/20/	0.010300	104	П15	П22	4.219870	0.198932	0.059800	100
511 Si4	птэ цээ	2.449194	0.110411	0.009100	104	$\Gamma \Gamma 2$	н20 Ц11	4.009601	0.303204	-0.000700	100
S14 Si1	П22 Ц16	2.440492	0.11/430	0.010500	104	U11		4.23/131	0.100303	0.072300	100
511	ніо Ціб	2.420431	0.110790	0.010000	104		П17	4.741329	0.457010	0.031900	100
S13		2.447210	0.117743	0.010400	104	C9 Si1	ППО Ц19	4.200093	0.100013	0.033000	100
S14 S15	1114 ЦЭ1	2.447704	0.117555	0.010300	104	S11 S11	П10	4.398884	0.100034	0.021300	100
S13 Si4	П21 Ц21	2.440/13	0.115078	0.009100	104	511	П20 Ц7	4.409977	0.100850	0.021200	100
514 Si4	H13	2.438013	0.115078	0.009200	104	C0	H13	4.409398	0.100213	0.022300	100
Si4 Si1	H15	2.403443	0.115078	0.009300	104	Cy Si4	нт Н7	4.310241	0.105861	0.033100	106
Si5	H15	2.474004	0.115173	0.000000	104	Si5	H18	4 470475	0.103601	0.023100	106
H7	08	2.709120	0.11/1507	0.009200	104	Si/	H20	4 481310	0.10753/	0.023900	106
H12	H10	3 079671	0.11-307	-0.037/00	104	H12	H17	4 880117	0.398520	0.02-000	106
H12	H15	2 537015	0.307777	-0.038900	104	C^2	H12	4 669/78	0.160377	0.019000	106
Sil	C9	2.557915	0.077290	0.010900	104	Si1	H21	4 508412	0 119336	0.034900	106
		2.000200	0.011470	0.010700	101		1141	1.200712	0.11/000	0.054700	100

I (g-Ax) conformer

C3	H19	2.765594	0.124026	0.008200	104	H10	H16	4.458860	0.410146	0.083200	106
C6	H19	2.762322	0.124311	0.008600	104	C2	H10	4.570056	0.161522	0.038500	106
C6	H17	2.763712	0.124502	0.008900	104	Si5	H13	4.617848	0.112907	0.032500	106
C6	H18	2.796325	0.122788	0.007000	104	Si4	H15	4.636375	0.110353	0.030300	106
C2	H17	2.776054	0.124311	0.008400	104	Si5	H10	4.776029	0.337135	0.103800	106
C2	H18	2.779021	0.122027	0.006700	104	Si5	H11	4.710272	0.376062	0.096800	106
C3	H7	2.777219	0.121551	0.005900	104	Si4	C9	4.926097	0.241822	0.045500	107
C6	H20	2.805670	0.122122	0.006900	104	C6	H12	5.080630	0.403146	-0.014700	107
C3	H20	2.787468	0.122122	0.006700	104	H10	H13	4.739547	0.297432	0.039400	107
C2	H7	2.807797	0.121360	0.005500	104	C2	H11	4.918437	0.169143	0.048500	107
C2	08	2.926245	0.086523	0.005700	104	08	H18	4.978788	0.248209	0.037600	107
C3	08	2.819276	0.083001	0.005100	104	08	H22	4.812854	0.256908	0.051900	107
H7	H10	2.718242	0.349137	-0.011700	104	H7	H19	4.828332	0.206878	0.036500	106
Si1	H10	2.909994	0.229395	0.015600	104	08	H21	4.850095	0.365706	0.060600	107
H18	H22	2.976764	0.211405	0.014400	104	Si4	H12	5.185000	0.330578	0.019000	107
H14	H18	2.974887	0.202458	0.013700	104	H13	H15	4.816394	0.165509	0.038200	107
H20	H22	2.971427	0.209977	0.014600	104	H13	H21	4.796222	0.132635	0.040300	106
H17	H21	2.985772	0.213214	0.017100	104	H15	H21	4.792745	0.131754	0.039400	106
H7	H15	3.000319	0.189608	0.008000	104	08	H20	4.838547	0.241051	0.036700	107
H16	H20	3.006547	0.202553	0.014500	104	H14	H19	4.844576	0.263515	0.046500	107
H19	H21	2.988172	0.212452	0.017200	104	H7	H17	4.889620	0.260101	0.037900	107
H13	H17	3.006277	0.214451	0.018200	104	H16	H17	4.861464	0.261643	0.045300	107
Si1	H12	3.000801	0.205599	0.007100	104	H11	H13	5.062519	0.309765	0.048500	107
H15	H19	3.019925	0.212167	0.018000	104	C3	H18	4.959117	0.159673	0.027500	107
C3	H12	3.033303	0.313538	-0.041300	104	H18	H19	4.983493	0.277610	0.042400	107
H7	H13	3.043356	0.188180	0.006600	104	C2	H20	4.976804	0.158131	0.028500	107
H18	H21	3.063849	0.188180	0.010300	104	H17	H20	4.992357	0.281244	0.043200	107
H20	H21	3.051502	0.188180	0.009800	104	C6	H7	4.933556	0.150863	0.032400	107
08	H13	3.187389	0.203029	0.017300	104	H12	H13	5.113701	0.256578	0.056600	107
H15	H20	3.036591	0.188561	0.010400	104	C9	H14	5.031595	0.135777	0.043600	107
H7	H16	3.027349	0.208645	0.014600	104	H13	H19	5.012704	0.326283	0.051000	107
H13	H18	3.044125	0.187894	0.010200	104	C6	C9	5.181741	0.289063	0.050800	107
C2	C3	3.056406	0.087855	0.007500	104	H16	H18	5.041634	0.320777	0.041600	107
C3	C6	3.032325	0.089854	0.009100	104	H15	H17	5.081565	0.313069	0.048000	107
C2	C6	3.037745	0.090045	0.009500	104	H14	H20	5.091806	0.329697	0.044200	107
H7	H14	3.052239	0.208645	0.013200	104	C9	H20	5.218216	0.342801	0.042400	107
H14	H16	3.020088	0.313538	0.026700	104	Si4	H11	5.385082	0.398301	0.065200	107
Si1	Si5	3.112748	0.079479	0.009700	104	H10	H17	5.295003	0.415149	0.118500	107
Si1	Si4	3.113613	0.079003	0.010100	104	H7	H22	5.114352	0.320227	0.049300	107
H16	H22	3.044490	0.318202	0.031900	104	H12	H14	5.352132	0.255917	0.030600	107
08	H17	3.295470	0.325341	0.034000	104	H12	H21	5.705073	0.497298	0.004800	107
H14	H22	3.090632	0.320487	0.032100	104	H10	H14	5.237947	0.270343	0.049100	107
08	H19	3.126663	0.313919	0.030500	104	H11	H16	5.223377	0.231581	0.102200	107
Si4	Si5	3.197433	0.086713	0.010800	104	Si4	H10	5.540809	0.240941	0.092000	107
08	H15	3.055300	0.187038	0.014800	104	H18	H20	5.567503	0.194801	0.039000	107
C9	H15	3.082464	0.282032	0.012300	104	H12	H22	5.738402	0.398191	-0.002400	107
H7	C9	3.022285	0.201696	0.024200	104	H7	H20	5.535004	0.183899	0.031700	107
C2	H16	3.216436	0.203410	0.020500	104	H7	H18	5.554950	0.184670	0.032500	107
C3	H14	3.227430	0.209882	0.021100	104	C6	H11	5.724229	0.493664	0.102600	107
C6	H16	3.224479	0.206836	0.023300	104	C9	H21	5.850789	0.403477	0.076400	107
C3	H22	3.220066	0.209406	0.023800	104	H10	H20	5.829510	0.525599	0.122000	107
C6	H14	3.245530	0.210072	0.024000	104	H11	H14	5.782723	0.174869	0.084100	107
C2	H22	3.247404	0.208645	0.024000	104	C9	H22	5.863590	0.271774	0.066600	107
C9	H19	3.517831	0.371315	0.035800	104	C6	H10	5.862005	0.320667	0.111100	107
H10	H15	3.256642	0.555022	0.098300	104	H11	H20	5.821641	0.524718	0.117900	107
C3	C9	3.331379	0.167906	0.011600	104	H7	H21	5.935371	0.166280	0.056300	107

Si5	H12	3.697367	0.411244	-0.052000	105	H15	H18	5.990326	0.169143	0.049200	107
H17	H19	3.409476	0.439081	0.049400	105	H13	H20	5.994337	0.167712	0.052200	107
Si4	08	3.585680	0.231800	0.026400	105	C9	H18	6.348612	0.261203	0.064700	107
Si5	08	3.478589	0.221521	0.024500	105	H11	H21	6.261727	0.651685	0.131200	107
Si1	H19	3.509344	0.223877	0.020900	105	H12	H18	6.653869	0.346325	0.044800	107
Si1	H17	3.546197	0.223877	0.021600	105	H10	H22	6.427542	0.370771	0.122500	107
Si1	C6	3.542300	0.108137	0.015900	105	H11	H22	6.513540	0.427262	0.124000	107
Si1	H11	3.540621	0.118630	0.050000	105	H11	H18	6.773442	0.421096	0.081400	107
Si4	H19	3.617013	0.258887	0.027700	105	H10	H21	6.619384	0.388060	0.146900	107
Si5	H17	3.635243	0.258138	0.028100	105	H10	H18	6.909876	0.257128	0.110300	107
C2	Si5	3.643681	0.103534	0.012800	105						

Table S2: Interatomic r_a distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used. III (g-Eq) conformer

At1	At2	r _a	1	r _{h1} -r _a	Gu	At1	At2	r _a	1	r _{h1} -r _a	Gu
C9	H12	1.078770	0.078395	0.001400	100	H7	H14	3.608463	0.153427	0.026600	105
C3	H15	1.082311	0.078807	0.001900	100	H19	H22	3.613609	0.153427	0.027000	105
C6	H21	1.082482	0.078807	0.001900	100	H17	H22	3.627844	0.153320	0.027000	105
C2	H13	1.083316	0.078910	0.001900	100	H7	H16	3.621659	0.153748	0.027000	105
C9	H10	1.084578	0.079322	0.001400	100	H14	H17	3.634340	0.153748	0.027300	105
C6	H22	1.084315	0.079116	0.001900	100	H16	H19	3.637228	0.153641	0.027500	105
C3	H16	1.084584	0.079116	0.001900	100	H7	H10	3.551250	0.408460	0.069000	105
C9	H11	1.085583	0.079425	0.001300	100	C2	H11	3.771654	0.488332	0.079500	105
C2	H14	1.085118	0.079219	0.001900	100	Si1	H22	3.896326	0.233834	0.031900	105
08	C9	1.431459	0.059701	0.000600	101	Si4	H16	3.944550	0.232870	0.032400	105
Si5	H20	1.500946	0.112099	0.001700	101	Si5	H14	3.952501	0.230836	0.031000	105
Si4	H18	1.501260	0.112227	0.001700	101	C2	H15	3.977114	0.124305	0.024300	105
Si5	H19	1.502682	0.112227	0.001600	101	C3	H13	3.983359	0.124305	0.024000	105
Si4	H17	1.502832	0.112227	0.001600	101	C6	H13	3.959872	0.125161	0.024400	105
Si1	H7	1.505433	0.112739	0.001500	101	C3	H21	3.957038	0.124947	0.024700	105
Si1	08	1.666697	0.072083	-0.000300	102	C2	H21	3.964502	0.125054	0.024300	105
H21	H22	1.731467	0.127612	0.010700	103	C6	H15	3.964921	0.124947	0.024800	105
H15	H16	1.732016	0.127713	0.010700	103	H7	H12	3.942755	0.306853	0.075300	105
H13	H14	1.735228	0.127612	0.010700	103	C3	H17	4.172299	0.215421	0.034200	106
H11	H12	1.749509	0.124464	0.009100	103	H11	H14	4.207575	0.445374	0.129400	106
H10	H12	1.748860	0.124363	0.009900	103	C2	H19	4.191194	0.213396	0.033800	106
H10	H11	1.755592	0.124464	0.009500	103	C3	C9	4.124836	0.080497	0.033800	106
Si1	C3	1.861390	0.052385	0.000700	103	C6	H7	4.173397	0.211282	0.031300	106
Si1	C2	1.873445	0.053298	0.000700	103	H13	H16	4.206396	0.195341	0.038700	106
Si4	C6	1.881274	0.053400	0.000300	103	H13	H22	4.201161	0.199040	0.039300	106
Si5	C6	1.881915	0.053501	0.000400	103	H14	H21	4.201376	0.198864	0.039200	106
C3	Si5	1.881867	0.053501	0.000500	103	H14	H15	4.209743	0.195957	0.039000	106
C2	Si4	1.882930	0.053704	0.000500	103	H16	H21	4.198855	0.200097	0.040100	106
08	H12	2.042060	0.102130	0.004600	103	H15	H22	4.190745	0.199745	0.040100	106
08	H10	2.082180	0.102333	0.004900	103	H12	H13	4.424548	0.267119	0.054700	106
08	H11	2.087600	0.102130	0.004000	103	C9	H16	4.300590	0.197455	0.047100	106
H17	H18	2.424220	0.140493	0.009400	104	Si1	H20	4.415406	0.107446	0.024200	106
H19	H20	2.425122	0.140397	0.009400	104	Si1	H18	4.422818	0.107975	0.024300	106
Si1	H16	2.401122	0.117743	0.011100	104	Si4	H20	4.465163	0.107006	0.022700	106
Si1	H14	2.421581	0.118315	0.010900	104	Si5	H18	4.466004	0.107006	0.022900	106
Si1	H15	2.447413	0.114793	0.008800	104	C9	H15	4.278809	0.170681	0.040500	106

Si4	H14	2.442095	0.117553	0.010600	104	C2	H12	4.530656	0.203884	0.067400	106
Si5	H16	2.444028	0.117648	0.010600	104	H12	H14	4.610432	0.352723	0.087100	106
Si4	H22	2.444913	0.116982	0.010200	104	Si5	08	4.487593	0.075212	0.020500	106
Si5	H22	2.425810	0.117172	0.010300	104	C3	H11	4.478625	0.174732	0.046700	106
Si4	H13	2.453143	0.115554	0.008900	104	Si4	08	4.655911	0.074420	0.020300	106
Si4	H21	2.459364	0.115364	0.008600	104	C3	H10	4.552350	0.182483	0.040100	106
Si5	H21	2.450276	0.115269	0.008600	104	Si4	H15	4.600716	0.116077	0.033300	106
Si1	H13	2.471164	0.115364	0.008700	104	Si1	H21	4.555014	0.113876	0.032800	106
Si5	H15	2.463833	0.115649	0.008700	104	Si5	H13	4.607420	0.115813	0.032600	106
08	H7	2.522263	0.114793	0.006200	104	H10	H16	4.601186	0.301554	0.045400	106
Si1	C9	2.675599	0.076624	0.010500	104	H11	H15	4.579511	0.274605	0.048700	106
C2	H7	2.740089	0.123264	0.007600	104	H16	H17	4.799354	0.214188	0.050700	106
H10	H13	3.041563	0.408342	-0.077900	104	H13	H15	4.812597	0.165509	0.038300	107
C6	H19	2.749226	0.124311	0.008400	104	H13	H21	4.792208	0.132458	0.039000	106
C6	H17	2.749753	0.124121	0.008300	104	H14	H19	4.817087	0.213043	0.049700	106
C2	H17	2.761549	0.124216	0.008500	104	C3	H12	4.750646	0.135189	0.053300	106
C3	H19	2.763560	0.124121	0.008500	104	H15	H21	4.792140	0.132282	0.039300	106
C3	H7	2.768380	0.123454	0.007300	104	H7	H22	4.796261	0.214276	0.048200	106
C3	H20	2.784144	0.121836	0.006600	104	H18	H19	4.907741	0.272215	0.039500	107
C2	H18	2.787135	0.122217	0.006700	104	H17	H20	4.907773	0.271774	0.039300	107
C6	H20	2.812100	0.122217	0.006600	104	H7	H18	4.879563	0.278161	0.039800	107
C6	H18	2.812234	0.122027	0.006600	104	H12	H16	4.831047	0.260161	0.057200	106
C3	08	2.778202	0.084810	0.003100	104	H7	H20	4.918975	0.278932	0.040100	107
H7	H11	2.796454	0.369031	-0.019700	104	H12	H15	4 746003	0.229160	0.046500	106
C2	08	3 038507	0.083477	0.003400	104	C2	H20	4 972639	0.157250	0.031100	107
Si1	H11	2.897967	0.221590	0.011800	104	C3	H18	4.971904	0.156479	0.032100	107
H7	H13	2.981703	0.211215	0.016100	104	H15	H17	4.950665	0.347096	0.054000	107
H16	H20	3 001324	0.207978	0.014500	104	H11	H16	4 856841	0 249750	0.082700	107
H14	H18	3.001926	0.207970	0.015200	104	Si4	H10	5 177383	0.405349	-0.013100	107
H19	H21	2 982168	0.212642	0.016900	104	H13	H19	4 969832	0.343462	0.053400	107
H13	H17	3.002366	0.212012	0.017000	104	H7	H21	4 956009	0.339167	0.050600	107
08	H16	2 948831	0.197984	0.013300	104	08	H19	4 958476	0.255697	0.037200	107
H20	H22	3 000807	0.197901	0.014500	104	H10	H15	4 896504	0.234003	0.069200	107
H17	H21	2 994954	0.212357	0.017000	104	08	H17	5 104541	0.256798	0.036800	107
H18	H22	3.033004	0.212337	0.014700	104	C6	08	5.077018	0.132804	0.028400	107
H7	H15	3.018369	0.207217	0.014700	104	H14	H20	5.098898	0.132004	0.023400	107
H15	H10	3.015338	0.210072	0.015500	104	H16	H18	5.000873	0.321700	0.047200	107
Si1	H10	3.003117	0.212547	0.010500	104	08	H22	5 100422	0.324171	0.045200	107
ын Ц12	П10 Ц19	3.003117	0.207788	0.010500	104	5;4	C0	5 332106	0.320337	0.043700	107
Ц19	П10 Ц21	3.010433	0.189313	0.009300	104	S14 Si4	С 9 Ц11	5 382065	0.200094	0.031800	107
H15	H20	3.004071	0.180417	0.009100	104	H11	H17	5.362003	0.493090	0.070700	107
	H21	2.05/695	0.109417	0.009300	104	ПП Ц10	ПП / Ц17	5.632926	0.362731	0.044200	107
H20	П21 С2	2.052762	0.100273	0.009200	104		П17 Ц20	5.023030	0.407120	0.019200	107
C_2	C5 C6	2.024027	0.000220	0.009300	104		П20	5.594141	0.16/092	0.034900	107
C3		3.034937	0.090330	0.009800	104	09		5.059070	0.310393	0.040200	107
02	C6	3.036673	0.090330	0.009300	104	08	H20	5.538140	0.166390	0.033900	107
08	HIJ	2.932988	0.10//15	0.005400	104	HIU	HI8	5.938/92	0.482432	-0.031100	107
08	H14	3.210431	0.192559	0.012900	104	08	HI8	5.785619	0.163/4/	0.034100	107
HI4	H22	3.060260	0.316489	0.032200	104	S15	<u>C9</u>	5.722932	0.111441	0.053100	107
HI4	HIG	3.060210	0.309636	0.030700	104	HI5	HI8	5.98/941	0.16/161	0.054700	107
H16	H22	3.049745	0.319059	0.033900	104	H13	H20	5.989854	0.167381	0.053500	107
C2	H10	3.352442	0.353325	-0.038100	104	Si5	H11	5.908021	0.295230	0.063100	107
Si1	Si5	3.133283	0.085476	0.011100	104	C6	H10	6.140183	0.389602	0.024800	107
Si1	Si4	3.134948	0.086047	0.011100	104	Si5	H10	6.046502	0.276509	0.051200	107
Si4	Si5	3.167669	0.083953	0.010000	104	H10	H22	6.199331	0.537051	0.038300	107
H10	H14	3.398871	0.490772	-0.008500	104	C6	C9	6.113450	0.188194	0.055500	107
	00	2 000204	0 222112	0.022200	104	H11	H10	5 988959	0/10/1655	0.055000	107

							1				
08	H13	3.332037	0.161338	0.005300	104	C9	H18	6.291446	0.295560	0.041400	107
C9	H13	3.453121	0.304391	-0.012400	105	08	H21	6.095237	0.141944	0.050800	107
H17	H19	3.258102	0.359988	0.037300	104	C9	H19	6.047031	0.318355	0.068500	107
C2	H16	3.234667	0.203410	0.023600	104	C9	H22	6.253853	0.368789	0.076800	107
C6	H14	3.231317	0.206646	0.023700	104	Si4	H12	6.291178	0.220679	0.098200	107
H7	H17	3.256369	0.371315	0.038800	104	H11	H18	6.365009	0.588036	0.099000	107
C2	H22	3.232788	0.207407	0.023800	104	C6	H11	6.318523	0.373304	0.085100	107
C6	H16	3.232423	0.208740	0.024800	104	H10	H19	6.466413	0.391584	0.082700	107
C3	H14	3.244872	0.202934	0.023300	104	Si5	H12	6.455847	0.155709	0.091600	107
C3	H22	3.220178	0.207788	0.024500	104	H12	H17	6.642460	0.329697	0.116100	107
H7	H19	3.304221	0.376550	0.040500	104	H11	H22	6.611863	0.440036	0.122200	107
H11	H13	3.461802	0.632015	0.086800	105	C9	H20	6.861918	0.162536	0.076400	107
C2	C9	3.580735	0.230515	0.012100	105	H12	H19	6.809885	0.340819	0.116400	107
Si5	H17	3.541168	0.249144	0.025000	105	C6	H12	6.964247	0.222220	0.109300	107
Si4	H19	3.545975	0.248074	0.025000	105	H10	H21	7.138147	0.395658	0.047300	107
Si1	H17	3.524401	0.253962	0.026500	105	H12	H22	7.041455	0.428364	0.124500	107
Si4	H7	3.532740	0.253213	0.024600	105	C9	H21	7.111254	0.195572	0.079300	107
Si1	H19	3.534573	0.253855	0.026900	105	H12	H18	7.238546	0.333991	0.115400	107
Si5	H7	3.564499	0.255568	0.024900	105	H10	H20	7.228484	0.308664	0.080200	107
Si1	H12	3.538221	0.118309	0.047100	105	H11	H20	7.130007	0.283447	0.095100	107
Si1	C6	3.578239	0.105568	0.014700	105	H11	H21	7.251423	0.408652	0.104100	107
C3	Si4	3.625936	0.106746	0.014900	105	H12	H20	7.482623	0.230259	0.105800	107
C2	Si5	3.632838	0.106853	0.014300	105	H12	H21	7.975210	0.220679	0.139700	107
C9	H14	3.774831	0.379766	0.043900	105						

Table S6: Interatomic ra distances in 1-methoxy-1,3,5-trisilacyclohexane with corresponding refined amplitudes and vibrational corrections. Numbers in the last column indicate groups in which scale factors for the corresponding amplitudes have been refined. All values of parameters are in Å. Internal numeration (see Table S3) of atoms is used. IV (*tr*-Eq) conformer

At1	At2	r _a	1	r _{h1} -r _a	Gu	At1	At2	r _a	1	r _{h1} -r _a	Gu
C9	H10	1.078680	0.079322	0.001500	100	C2	Si5	3.617582	0.106853	0.014000	105
C6	H21	1.082471	0.078807	0.001900	100	C3	Si4	3.617608	0.106853	0.014000	105
C2	H13	1.082808	0.078807	0.001900	100	Si1	C6	3.591236	0.105782	0.014700	105
C3	H15	1.082815	0.078807	0.001900	100	H16	H19	3.630085	0.153427	0.027400	105
C6	H22	1.084350	0.079116	0.001900	100	H14	H17	3.630323	0.153427	0.027200	105
C9	H11	1.084837	0.081485	0.001700	100	H17	H22	3.628108	0.153534	0.026900	105
C9	H12	1.084844	0.081485	0.001700	100	H19	H22	3.614674	0.153534	0.026900	105
C3	H16	1.085411	0.079219	0.001900	100	H7	H14	3.636770	0.152998	0.025800	105
C2	H14	1.085412	0.079219	0.001900	100	H7	H16	3.634400	0.152998	0.025900	105
08	C9	1.429793	0.059701	0.000600	101	C9	H15	3.999155	0.404391	0.049800	105
Si1	H7	1.495318	0.111202	0.001500	101	C9	H13	3.406404	0.403856	0.050500	105
Si4	H18	1.501184	0.112099	0.001700	101	H7	C9	3.686892	0.131692	0.043700	105
Si5	H20	1.501191	0.112227	0.001700	101	C3	H12	4.237081	0.605784	0.123800	105
Si5	H19	1.502529	0.112227	0.001600	101	C2	H11	3.351177	0.605141	0.124600	105
Si4	H17	1.502544	0.112227	0.001600	101	Si5	H14	3.908108	0.232549	0.031000	105
Si1	O 8	1.665937	0.072083	-0.000300	102	Si4	H16	3.908885	0.233406	0.031200	105
H21	H22	1.731150	0.127612	0.010700	103	C3	H13	3.959239	0.123983	0.023100	105
H13	H14	1.735298	0.127713	0.010700	103	C2	H15	3.959059	0.123983	0.023300	105
H15	H16	1.735302	0.127713	0.010700	103	Si1	H22	3.934386	0.230087	0.031200	105
H10	H12	1.748648	0.126190	0.008900	103	C2	H21	3.962371	0.124733	0.024400	105
H10	H11	1.748651	0.126089	0.008900	103	C3	H21	3.956687	0.124840	0.024400	105
H11	H12	1.756016	0.126901	0.010300	103	C6	H13	3.963086	0.125268	0.024100	105

Si1	C3	1.873996	0.053298	0.000600	103	C6	H15	3.962978	0.125268	0.024300	105
Si1	C2	1.874001	0.053298	0.000600	103	C3	H17	4.180324	0.210137	0.032200	106
Si4	C6	1.881727	0.053501	0.000400	103	C2	H19	4.181228	0.210930	0.032400	106
Si5	C6	1.881743	0.053501	0.000400	103	C6	H7	4.152116	0.205205	0.031600	106
C3	Si5	1.882978	0.053704	0.000500	103	H14	H15	4.155844	0.195781	0.037600	106
C2	Si4	1.882979	0.053704	0.000500	103	H13	H16	4.156151	0.195869	0.037400	106
08	H10	2.037123	0.102637	0.007500	103	H7	H11	4.220707	0.188383	0.056800	106
08	H11	2.085834	0.106698	0.003100	103	H7	H12	3.861254	0.188295	0.056900	106
08	H12	2.085897	0.106698	0.003100	103	H10	H16	4.369270	0.293716	0.085700	106
H17	H18	2.425341	0.140397	0.009400	104	H10	H14	4.227712	0.294244	0.086300	106
H19	H20	2.425396	0.140397	0.009400	104	H14	H21	4.183298	0.198776	0.039600	106
Si4	H14	2.433471	0.117648	0.010900	104	H16	H21	4.178558	0.199128	0.039800	106
Si5	H16	2.433504	0.117743	0.010900	104	H13	H22	4.204114	0.199745	0.039000	106
Si4	H22	2.444958	0.117172	0.010400	104	H15	H22	4.187567	0.199656	0.039300	106
Si5	H22	2.425720	0.117172	0.010400	104	H12	H15	4.629316	0.542076	0.186000	106
Si1	H16	2.432708	0.117934	0.010500	104	H11	H13	3.589598	0.540755	0.186500	106
Si1	H14	2.432721	0.117934	0.010500	104	Si1	H18	4.423080	0.108063	0.023800	106
Si1	H13	2.462855	0.115745	0.008800	104	Si1	H20	4.422951	0.108063	0.024000	106
Si1	H15	2.462860	0.115745	0.008800	104	Si4	H20	4.464232	0.106830	0.022800	106
Si4	H21	2.459987	0.115173	0.008800	104	Si5	H18	4.464473	0.106830	0.022700	106
Si5	H21	2.449989	0.115173	0.008800	104	C3	H10	4.497891	0.212251	0.080200	106
Si5	H15	2.461114	0.115554	0.008900	104	C2	H10	4.358620	0.212867	0.080500	106
Si4	H13	2.461465	0.115364	0.008800	104	H7	H10	4.381213	0.147695	0.046400	106
08	H7	2.445298	0.114983	0.006000	104	H10	H13	4.344996	0.323660	0.083900	106
H11	H16	3.313228	0.426237	-0.173600	104	H10	H15	4.566177	0.323836	0.083500	106
H12	H14	3.155819	0.426332	-0.173500	104	Si4	08	4.661368	0.076093	0.018400	106
Si1	C9	2.690121	0.073387	0.009000	104	Si5	08	4.539514	0.076181	0.018500	106
C6	H17	2.750864	0.124406	0.008300	104	Si4	H15	4.603091	0.113876	0.031800	106
C6	H19	2.750855	0.124502	0.008400	104	Si5	H13	4.603606	0.113787	0.031600	106
C3	H19	2.763285	0.123930	0.008300	104	Si1	H21	4.558054	0.115461	0.032900	106
C2	H17	2.763334	0.123835	0.008300	104	H16	H17	4.782967	0.212867	0.048700	106
C2	H7	2.768685	0.123264	0.007700	104	H14	H19	4.783109	0.213131	0.048700	106
C3	H7	2.765585	0.123264	0.007800	104	H13	H15	4.803216	0.130609	0.036800	106
C3	H20	2.787784	0.122217	0.006800	104	H15	H21	4.789997	0.132018	0.039000	106
C6	H20	2.810085	0.122122	0.006800	104	H13	H21	4.798041	0.131930	0.038800	106
C2	H18	2.787955	0.122217	0.006800	104	H7	H22	4.797488	0.210577	0.047900	106
C6	H18	2.810249	0.122027	0.006800	104	H7	H18	4.884312	0.271884	0.039600	107
C3	08	2.861645	0.082906	0.002800	104	H7	H20	4.881714	0.272435	0.040000	107
C2	08	3.043407	0.082906	0.003000	104	H17	H20	4.920369	0.271113	0.038900	107
Si1	H12	2.977418	0.217687	0.002800	104	H18	H19	4.920619	0.271774	0.038900	107
Si1	H11	2.977926	0.217497	0.003000	104	Si5	H11	5.336847	0.391804	-0.050600	107
H16	H20	2.999127	0.208074	0.015700	104	Si4	H12	5.043332	0.392134	-0.050700	107
H14	H18	3.000009	0.207598	0.015600	104	C2	H20	4.956168	0.157581	0.030800	107
H20	H22	2.994359	0.207312	0.015000	104	C3	H18	4.956820	0.157470	0.030700	107
H19	H21	2.980457	0.212262	0.016900	104	H7	H21	4.917189	0.331128	0.050900	107
H18	H22	3.022506	0.206836	0.014900	104	H15	H17	4.977887	0.335093	0.051000	107
H17	H21	2.989217	0.212167	0.016900	104	H13	H19	4.979707	0.335533	0.051000	107
H15	H19	3.021483	0.211500	0.017000	104	08	H17	5.052681	0.261863	0.034700	107
H13	H17	3.022503	0.210834	0.016900	104	08	H19	4.936570	0.262854	0.034900	107
C2	C3	3.024765	0.087760	0.008800	104	H14	H20	5.049601	0.321878	0.047000	107
H7	H15	3.032314	0.210453	0.016500	104	H16	H18	5.051250	0.322649	0.047200	107
H7	H13	3.037085	0.210072	0.016400	104	C6	08	5.143656	0.118158	0.025200	107
H13	H18	3.022306	0.189513	0.009700	104	Si5	C9	5.463959	0.222441	0.028300	107
H15	H20	3.022336	0.189513	0.009700	104	Si4	C9	5.191520	0.222771	0.028600	107
H14	H16	2.974383	0.304496	0.029100	104	H12	H22	5.861809	0.690337	0.003100	107
H18	H21	3.069875	0.188180	0.009700	104	H11	H22	5.309248	0.690667	0.004400	107
			1	1			1				

H20	H21	3.055753	0.188180	0.009700	104	08	H22	5.313399	0.297102	0.040900	107
C2	C6	3.034054	0.090235	0.009300	104	Si5	H12	5.803224	0.569757	0.088600	107
C3	C6	3.034256	0.090235	0.009400	104	Si4	H11	5.126088	0.569206	0.089300	107
H14	H22	3.043231	0.315727	0.032800	104	C6	H12	5.889091	0.524057	0.005900	107
H16	H22	3.030025	0.316203	0.033000	104	C6	H11	5.539321	0.524167	0.006800	107
C3	H11	3.668510	0.352659	-0.091700	104	H18	H20	5.589047	0.187643	0.035500	107
C2	H12	3.201797	0.397325	-0.091300	105	C9	H22	5.742157	0.408652	0.021100	107
08	H13	3.277596	0.166288	0.006200	104	H11	H20	6.219932	0.485736	-0.081600	107
08	H15	3.005722	0.166573	0.005800	104	H12	H18	5.757349	0.485846	-0.081400	107
Si1	Si4	3.133005	0.085761	0.011000	104	C6	C9	5.784670	0.225854	0.022600	107
Si1	Si5	3.133196	0.085952	0.011100	104	08	H20	5.623297	0.158461	0.031400	107
Si4	Si5	3.168307	0.084048	0.009800	104	08	H18	5.797140	0.158241	0.031300	107
08	H16	3.115485	0.181803	0.010700	104	H11	H19	6.161607	0.402816	0.014200	107
08	H14	3.281557	0.181803	0.010900	104	H12	H17	5.643727	0.402816	0.014100	107
C3	H14	3.185453	0.201791	0.022700	104	C9	H19	6.078353	0.273426	0.063900	107
C2	H16	3.185847	0.202172	0.022700	104	C9	H17	5.824520	0.273096	0.063900	107
C6	H14	3.207451	0.206931	0.024100	104	H13	H20	5.981949	0.167491	0.052500	107
C9	H16	3.652755	0.317060	-0.011700	104	H15	H18	5.982093	0.167491	0.052600	107
C6	H16	3.208313	0.207503	0.024300	104	C9	H20	6.472324	0.343131	0.038800	107
C9	H14	3.251886	0.357389	-0.010700	105	C9	H18	6.063469	0.343021	0.039200	107
H7	H17	3.238403	0.360274	0.038500	104	08	H21	6.146900	0.134786	0.047400	107
H11	H15	3.953064	0.542933	-0.028700	104	Si5	H10	6.274196	0.229048	0.104600	107
H7	H19	3.236824	0.361892	0.039100	104	Si4	H10	6.170404	0.229598	0.104600	107
H12	H13	2.904887	0.610816	-0.027700	105	H12	H19	6.387117	0.466905	0.112200	107
H17	H19	3.281632	0.361511	0.037300	104	H11	H17	5.999676	0.466134	0.112200	107
C2	H22	3.238274	0.207027	0.023900	104	H12	H20	6.900797	0.737358	0.137000	107
C3	H22	3.225000	0.207027	0.024000	104	H11	H18	5.893113	0.736037	0.137700	107
C3	C9	3.758602	0.236819	0.014100	104	H12	H21	6.906857	0.520203	0.030400	107
C2	C9	3.369166	0.266917	0.014700	105	H11	H21	6.599108	0.520203	0.031100	107
Si1	H17	3.506899	0.250322	0.026100	105	H10	H22	6.658228	0.432108	0.136700	107
Si1	H19	3.507740	0.251500	0.026400	105	C6	H10	6.717674	0.242152	0.119700	107
Si4	H7	3.528499	0.245397	0.024800	105	C9	H21	6.827255	0.230479	0.050900	107
Si5	H7	3.526564	0.245825	0.025000	105	H10	H17	6.751379	0.294569	0.112700	107
Si5	H17	3.554393	0.248074	0.024500	105	H10	H19	6.851060	0.294899	0.113000	107
H12	H16	4.093486	0.716931	0.165700	104	H10	H20	7.201061	0.348858	0.124400	107
Si4	H19	3.554817	0.248930	0.024600	105	H10	H18	7.041323	0.349078	0.124300	107
H11	H14	2.858395	0.806320	0.167200	105	H10	H21	7.760114	0.243584	0.147400	107
Si1	H10	3.544048	0.115311	0.051400	105						

Table S7: Matrix of correlation coefficients between refined parameters.

The order of parameters was as follows: two scale factors for sMs(s) curves, conformational composition, groups of geometrical parameters (1-10), groups of scale factors for amplitudes (100-107, see Table S4-6).

1.0000 0.5321 1.0000 -0.0577 -0.0744 1.0000 -0.0206 -0.0266 -0.4910 1.0000 -0.1939 -0.1925 -0.1360 0.4953 1.0000 -0.3091 -0.3298 0.0883 -0.0522 0.2778 1.0000 -0.4836 -0.4548 0.0417 0.0295 0.3806 0.4632 1.0000 -0.0988 -0.1276 0.0521 -0.1810 -0.0373 0.2917 0.2030 1.0000 0.1419 0.1460 0.3035 -0.6435 -0.7099 -0.0836 -0.1662 0.0952 -0.0234 0.0027 0.2054 -0.6761 -0.3293 0.1171 0.0518 0.1526

1.0000

0.3998 1.0000 -0.1991 -0.0295 1.0000 0.2785 0.1033 -0.0365 1.0000 0.0029 -0.2128 0.0186 -0.0974 1.0000 0.5452 0.5741 -0.1360 0.5243 -0.3151 1.0000 -0.0174 -0.0121 0.0075 0.0532 0.0218 0.0026 1.0000 -0.0973 -0.0130 0.0739 0.0080 -0.0211 0.0071 0.0233 1.0000 -0.1336 -0.0138 -0.0603 -0.0272 -0.0323 -0.0150 0.0269 0.4371 0.1453 -0.0002 0.2566 0.1766 0.0861 0.1040 0.1167 0.0956 -0.5877 0.1001 0.2590 -0.2608 -0.0841 -0.2064 0.0467 0.0557 -0.4253 -0.3229 0.2178 0.2090 0.1789 -0.3992 0.0450 0.0408 -0.3436 -0.5384 0.1615 0.2675 -0.1695 -0.2295 0.0537 0.0611 -0.0290 -0.1047 -0.1155 -0.2774 -0.3162 -0.1408 -0.0160 0.0203

1.0000 0.0944 1.0000 0.0613 0.1409 1.0000 0.0156 0.0807 0.2063 1.0000 0.0180 0.1138 0.1182 0.3954 1.0000 0.0279 -0.0700 -0.0580 -0.1227 0.2363 1.0000

REFERENCES

[1] Girichev G.V., Utkin A.N., Revichev Y.F. Instrum. Exp. Techn. 1984. V. 27. N 2. P. 457–461.

[2] Girichev G.V., Shlykov S.A., Petrova V.N., Subbotyina N.Y., Lapshina S.B., Danilova T.G. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 1988. V. 1. N 31. P. 46–49.

[3] Girichev E.G., Zakharov A.V., Girichev G.V., Bazanov M.I. Izv. Vyssh. Uchebn. Zaved., Tekhnol. Tekst. Prom. 2000. N 2. P. 142–146.

[4] Andersen B., Seip H.M., Strand T.G., Stølevik. R. Acta Chem. Scand. 1969. V. 23. N 9. P. 3224–3234. DOI: 10.3891/acta.chem.scand.23-3224.

[5] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision D.01. 2009. Gaussian, Inc.: Wallingford, CT.