4. Экспериментальными данными и термодинамическими расчетами показано, что причина отсутствия влияния ПАВ при высоких отрицательных потенциалах на величины катодного тока для электролитов с фоновым раствором сульфата натрия связана с возможными процессами восстановления сульфатов на осажденном металлическом цинке и на катоде.

ЛИТЕРАТУРА

- 1. Колесников А.В. // Вестн. СГТУ. 2014. Т. 3. № 76. С. 47-52; Kolesnikov А.V. // Bestn. SGTU. 2014. V. 3. N 76. Р. 47-52 (in Russian).
- Колесников А.В. // Бутлеровские сообщения. 2014. Т. 40. № 12. С. 110-116; Коlesnikov А.V. // Butlerov Soobshcheniya. 2014. V. 40. N 12. P. 110-116 (in Russian).
- Колесников А.В.,Казанбаев Л.А., Козлов П.А. // Цвет. металлы. 2006. № 8. С. 24-28; Kolesnikov A.V., Kazanbaev L.A., Kozlov P.A. //
- Тsvetnye metally. 2006. N 8. P. 24 28 (in Russian). 4. Минин И.В., Соловьева Н.Д. // Вестн. СГТУ. 2013.Т. 1. № 69. С.57-62;

Minin I.V., Solovyova N.D. // Bestn. SGTU. 2013. V. 1. N 69. P.57-62 (in Russian).

 Медведев Г.И., Янчева Е.А. // Электрохимия. 1991. № 10. С. 1231-1235;
 Medvedev G.L., Yancheva E.A. // Elektrokhimiya. 1991.

N 10. P. 1231-1235 (in Russian).

- Медведев Г.И., Макрушин Н.А., Хамуньела В. // ЖПХ. 2007. Т. 80. № 8. С. 1276-1281; Medvedev G.I., Makrushin N.A., Hamunela V. // Zhurn. Prikl. Khimii. 2007. V. 80. N 8. P. 1276-1281 (in Russian).
- Титова В.Н., Казаков В.А., Явич А.А. // Электрохимия. 1996. № 5. С. 562-569;
 Titova V.N., Kazakov V.A., Yavich А.А. // Elektokhimiya. 1996. N 5. P. 562-569 (in Russian).
- Гороховская И.И., Гороховский В.М. Практикум по электрохимическим методам анализа. М.: Высш. шк. 1983. 192 с; Gorokhovskaya I.I., Gorokhovskiy V.M. Workshop on

electrochemical methods of analysis. M .: Vyssh. Shkola. 1983. 192 p. (in Russian).

- Галюс З. Теоретические основы электрохимического анализа. М.: Мир. 1974. 552 с.;
 Galyus Z. Theoretical foundations of electrochemical analysis. M.: MIR. 1974. 552 p. (in Russian).
- Кудрявцев А.А. Составление химических уравнений. М.: Высш. шк. 1968. 359 с.;
 Kudryavtsev А.А. Preparation of chemical equations. М.: Vyssh. Shkola. 1968. 359 p. (in Russian).
- Скорчеллети В.В. Теоретическая электрохимия. Л.: Химия. 1974. 567 с.;
 Skorchelletti V.V. Theoretical electrochemistry. L.: Khimiya. 1974. 567 p. (in Russian).
- Осипова Е.А., Зайцев Н.К., Федулов Д.М., Дедов А.Г. // Вестн. Моск. Ун-та. Сер.2. Химия. Т. 45. № 6. С. 405-409; Osipova E.A., Zaitsev N.K., Fedulov D.M., Dedov A.G. // Vestn. Mosk. Univ. Ser.2. Khimiya. 2004. V. 45. N 6. P. 405-409 (in Russian).

УДК 541.138.2

В.В. Пантелеева, А.Б. Шеин

АНОДНОЕ ВЫДЕЛЕНИЕ КИСЛОРОДА НА СИЛИЦИДАХ ЖЕЛЕЗА, КОБАЛЬТА И НИКЕЛЯ В ЩЕЛОЧНОМ ЭЛЕКТРОЛИТЕ

(Пермский государственный национальный исследовательский университет) e-mail: <u>ashein@psu.ru</u>

Методами поляризационных и импедансных измерений исследованы кинетические закономерности реакции выделения кислорода на моносилицидах железа, кобальта и никеля в растворах (0,1-5,0) М NaOH. Определены величины dE/dlgi, dlgi/dpH, dE/dpH. Установлено, что выделение кислорода на FeSi-, CoSi- и NiSi-электродах в щелочном электролите имеет закономерности, характерные для Fe-, Co- и Ni-электродов соответственно.

Ключевые слова: реакция выделения кислорода, силицид железа FeSi, силицид кобальта CoSi, силицид никеля NiSi, щелочной электролит, импеданс

Анодное образование кислорода имеет большое теоретическое и практическое значение [1]. Исследованию механизма и кинетических закономерностей реакции выделения кислорода (р.в.к.) на разных металлах посвящено значительное количество работ [2-4]. Широко изученными в этом отношении материалами являются металлы группы железа [5-10].

ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ 2016 том 59 вып. 1

Авторы [11-13] сообщают, что в щелочных средах анодное поведение моносилицидов железа, кобальта и никеля является довольно близким к поведению соответствующих металлов; последнее обусловлено селективным (химическим и электрохимическим) растворением кремния из поверхностного слоя силицидов и обогащением поверхности металлом и продуктами его окисления. Следовательно, закономерности р.в.к. на FeSi, CoSi и NiSi в щелочном электролите могут быть близки к закономерностям р.в.к. на Fe, Co и Ni. В то же время, выделение кислорода на силицидах может иметь особенности по сравнению с металлами, связанные с влиянием материала подложки на кинетику и механизм р.в.к. и возможным содержанием в составе пассивной пленки, присутствующей на поверхности силицидов при этих потенциалах, продуктов окисления кремния (диоксида кремния и силикатов).

Предметом настоящей работы является установление кинетических закономерностей р.в.к. на моносилицидах железа, кобальта и никеля в щелочном электролите различной концентрации и определение роли металла и кремния в кинетике данного процесса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Электрохимические измерения проведены при комнатной температуре ~ (20-22) °С в условиях естественной аэрации в неперемешиваемых растворах (0,1-5,0) М NaOH. Для приготовления рабочих растворов использовали деионизованную воду (удельное сопротивление воды – 18,2 МОм·см, содержание органического углерода – 4 мкг/л), полученную с помощью системы очистки воды Milli-Q фирмы Millipore, и NaOH марки «х.ч.».

Используемые для измерений моносилициды железа, кобальта и никеля получены из кремния КПЗ-1 (99,99 мас.% Si), карбонильного железа В-2 (99,98 мас.% Fe), электролитического кобальта К-0 (99,98 мас.% Co) и электролитического никеля Н-0 (99,99 мас.% Ni) методом Чохральского в печи для промышленного выращивания монокристаллов ОКБ-8093 («Редмет-8»).

Перед проведением измерений рабочую поверхность электродов шлифовали абразивными бумагами с последовательным уменьшением размера зерна, обезжиривали этиловым спиртом, ополаскивали рабочим раствором. При погружении в раствор электроды выдерживали при потенциале разомкнутой цепи до установления стационарного значения потенциала, далее снимали спектры импеданса и вольтамперные кривые. Перед измерением спектров импеданса при каждом потенциале проводили потенциостатическую по-

ляризацию электродов до установления практически постоянного значения тока, после чего начинали измерения импеданса при данном Е и более высоких потенциалах, изменяя потенциал с определенным шагом. На основе полученных значений і для данного значения Е строили анодные потенциостатические кривые. Диапазон используемых в импедансных измерениях частот f – от 20 кГц до 0,01 Гц, амплитуда переменного сигнала 10 мВ. В качестве критерия оценки эквивалентных схем на их пригодность для моделирования экспериментальных спектров импеданса использовали параметр χ^2 (хи-квадрат, вычисляется в ZView2); эквивалентная схема считалась удовлетворительной при $\chi^2 < 10^{-3}$ (при использовании весовых коэффициентов, рассчитанных по экспериментальным значениям модуля импеданса).

Электрохимические измерения проводили с помощью потенциостата-гальваностата с встроенным частотным анализатором Solartron 1280С фирмы Solartron Analytical в ячейке ЯСЭ-2 с разделенными пористой стеклянной диафрагмой катодным и анодным отделениями. В качестве электрода сравнения использовали насыщенный хлоридсеребряный электрод, в качестве вспомогательного электрода – платиновый электрод. Все потенциалы в работе приведены относительно стандартного водородного электрода.

При электрохимических измерениях и обработке полученных данных использовали программы CorrWare2, ZPlot2, ZView2 (Scribner Associates, Inc.).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анодные потенциостатические кривые FeSi-, CoSi- и NiSi-электродов в растворах (0,1-5,0) M NaOH в области потенциалов выделения кислорода представлены на рис. 1. С ростом концентрации NaOH плотность тока на поляризационных кривых FeSi, CoSi и NiSi во всем исследованном диапазоне потенциалов повышается; исключение составляет только величина i на силициде железа в 0,1 M NaOH (рис. 1а).

Тафелевский наклон линейного участка lgi,*E*-кривой FeSi-электрода в растворе 0,1 M NaOH в области выделения кислорода равен 0,066 B, а в растворах (0,5-5,0) M NaOH составляет (0,140-0,162) В. Порядок реакции по OH⁻-ионам равен (*d*lgi/*d*pH)_{*E*=0,85B} ≈ 1,2, а зависимость потенциала электрода от pH раствора характеризуется производной *dE*/*d*pH = -0,202 В (при *i* = 1·10⁻⁵ A/cм²). Величины (*d*lg*i*/*d*pH)_{*E*=const} и (*dE*/*d*pH)_{*i*=const} рассчитаны для растворов (0,5-5,0) М NaOH. В растворе 0,1М NaOH на данном участке поляризационной кривой на поверхности силицида наблюдается интенсивное выделение кислорода, в растворах (0,5-5,0) М NaOH отмечается образование небольших пузырьков.

Спектры импеданса FeSi в растворе 0,1М NaOH состоят из двух очерченных емкостных полуокружностей, диаметр которых уменьшается с увеличением E (рис. 2); в растворах (0,5-5,0) М NaOH – из высокочастотной (BЧ) емкостной полуокружности и низкочастотной (НЧ) наклонной

Рис. 1. Анодные потенциостатические кривые FeSi (a), CoSi (б) и NiSi (в) в растворах NaOH, M: 1 – 0,1, 2 – 0,5, 3 – 1,0, 4 – 2,0, 5 – 5,0 Fig. 1. Anodic polarization curves for FeSi (a), CoSi (б) and NiSi (в) in NaOH, M: 1 – 0.1, 2 – 0.5, 3 – 1.0, 4 – 2.0, 5 – 5.0

прямой (рис. 3); прямая располагается в том же частотном диапазоне, что и при потенциалах пассивного состояния электрода [13].

Рис. 2. Спектры импеданса FeSi в 0,1 M NaOH при *E*, B: 1 – 0,70, 2 – 0,75, 3 – 0,80, 4 – 0,85, 5 – 0,90, 6 – 0,95 Fig. 2. Impedance spectra for FeSi in 0.1 M NaOH at *E*, V: 1 – 0.70, 2 – 0.75, 3 – 0.80, 4 – 0.85, 5 – 0.90, 6 – 0.95

По данным работ [9, 10, 14] в области перепассивации в растворах NaOH на поверхности Fe-электрода отмечается интенсивное выделение кислорода. Авторами [9] для этой области были получены тафелевские константы ~ (0,040-0,050) В и порядок реакции по ОН-ионам ~ 1,0 (при Е = =const). Согласно [10] р.в.к. на железе в щелочном электролите характеризуется константой Тафеля, равной (0,040-0,045) В, и порядком реакции ~ 1,0. Спектры импеданса Fe-электрода при Е выделения кислорода состоят из трех перекрывающихся емкостных полуокружностей: ВЧ-полуокружность отвечает пассивной пленке (предполагается, что выделение кислорода протекает не на металле, а на покрывающем его оксиде), полуокружность при средних частотах - переносу заряда через межфазную границу оксидная пленка/электролит в поле двойного электрического слоя, НЧ-полуокружность – адсорбции интермедиата на поверхности электрода [9, 10, 14].

Из расчетных и литературных данных следует, что согласие кинетических параметров реакции выделения кислорода на Fe- и FeSi-электродах в щелочном электролите достигается лишь частично. Последнее, вероятно, связано с содержанием небольшого количества диоксида кремния и/или силикатов в составе пассивирующей пленки на поверхности FeSi. При этом наилучшее согласие с кинетикой р.в.к. на железе, согласно поляризационным и импедансным измерениям, наблюдается для силицида железа в 0,1М NaOH.

В соответствии с кинетическими параметрами р.в.к., полученными для FeSi в растворах (0,5-5,0) М NaOH, скорость всего процесса в данных условиях, по-видимому, определяется скоростью разряда ионов ОН⁻. В растворе 0,1М NaOH наклон lgi, Е-кривой в тафелевских координатах равен 0,066 В, что трудно согласовать с предположением о замедленности стадии разряда. Различие механизма и кинетики р.в.к. на FeSi в 0,1 и (0,5-5,0) М NaOH, вероятно, обусловлено неодинаковым составом и/или разными барьерными свойствами формирующейся в данных растворах на его поверхности пассивирующей пленки: оксидный слой, образованный на FeSi в (0,5-5,0) М NaOH, создает значительный барьер переносу электронов, освобождающихся при разряде ионов ОН⁻, что обусловливает невысокие значения *i* при этих Е. Об этом также свидетельствуют данные работы [13], где сообщается, что lgi, E-кривая силицида железа в 0,1 М NaOH имеет один анодный пик, а в (0,5-5,0) М NaOH два пика.

Вид спектров импеданса на рис. 2 указывает на стадийный характер р.в.к. Для моделирования спектров импеданса (рис. 2) может быть использована эквивалентная электрическая схема на рис. 4а (или тождественная ей схема). В этой схеме: R_s – сопротивление раствора, R_1 – сопротивление переноса заряда, сопротивление R_2 и емкость C_2 отражают адсорбцию промежуточного соединения процесса выделения кислорода на поверхности электрода, C_1 – емкость двойного электрического слоя. В схеме на рис. 4б вместо двойносто янной фазы СРЕ₁, который точнее описывает процесс заряжения двойного электрического слоя на неоднородной поверхности твердого электрода.

В этом соотношении при $p = 1 - \gamma$ элемент постоянной фазы представляет неидеальную емкость; γ – величина, значительно меньше 1 (типично $\gamma < 0,2$) [15].

Схема на рис. 4б также была использована авторами [9, 10, 14] для моделирования процессов

на границе оксид/электролит системы Fe-электрод|оксид|электролит в области потенциалов выделения кислорода. На спектрах импеданса FeSiэлектрода в области высоких частот не было обнаружено дополнительной временной константы, которая характеризовала бы релаксацию процессов в оксидной пленке. Поэтому при описании р.в.к. на силициде железа из схемы, предложенной в работах [9, 10, 14] для железа, может быть исключена *RC*-цепочка, отвечающая оксидному слою (переход к схеме на рис. 4б).

Fig. 4. Equivalent circuits for oxygen evolution reaction

Импеданс элемента постоянной фазы равен: $Z_{CPE} = Q^{-1} (j\omega)^{-p}$.

Соответствие опытных данных теоретическим представлениям в изученной области потенциалов для FeSi-электрода подтверждается значениями χ^2 , которые для схемы на рис.46 составляют (2-4)·10⁻⁴.

Для области пассивного состояния FeSiэлектрода в щелочном электролите была предложена эквивалентная схема, описывающая присутствие на его поверхности двухслойной пассивирующей пленки, состоящей преимущественно из малорастворимых продуктов анодного окисления металла [13]; отмечено, что на спектрах импеданса, состоящих из двух перекрывающихся емкостных ВЧ-полуокружностей и наклонной НЧпрямой, последняя отвечает внутреннему слою пленки. Вероятно, уменьшение импеданса системы и постепенное вырождение наклонной прямой на графиках импеданса FeSi-электрода в растворах (0,5-5,0) М NaOH при повышении поляризации (рис.3) обусловлено наряду с выделением кислорода ослаблением пассивирующего действия пленки и ее частичным удалением с поверхности электрода; тем не менее, вклад пассивной пленки в полный импеданс системы при потенциалах выделения кислорода в этих растворах остается значительным.

Выделение кислорода на силицидах кобальта и никеля по сравнению с силицидом железа протекает с меньшим перенапряжением (рис. 1). Для CoSi-электрода р.в.к. имеет следующие кинетические параметры: константа Тафеля в (0,1 – 5,0) М NaOH принимает значения $\sim (0,048 - 0,055)$ В, порядок реакции по ионам ОН- составляет $(dlgi/dpH)_{E=0,75B} \approx 1,9$, а производная dE/dpH равна -0.099 В (при $i = 1.10^{-4}$ A/см²). Тафелевский наклон lgi, E-кривых NiSi-электрода при потенциалах выделения кислорода в (0,1 – 5,0) М NaOH равен (0,040 - 0,050) В, порядок реакции выделения кислорода по ионам OH⁻ составляет $(dlgi/dpH)_{E=0.70B} \approx 2,1, а$ зависимость потенциала электрода от рН раствора характеризуется производной dE/dpH = -0,095 В (при $i = 1.10^{-4}$ A/см²).

Спектры импеданса силицида кобальта в области потенциалов выделения кислорода состоят из двух очерченных емкостных полуокружностей (рис. 5); спектры импеданса силицида никеля – из двух перекрывающихся полуокружностей (рис. 6).

При исследовании реакции выделения кислорода на Со-электроде в растворах КОН авторами [16] были получены тафелевские наклоны ~ (0,060-0,080) В и порядок реакции по ОН-ионам 0,3-0,4 (при *E* = const). Согласно [8] константа Тафеля для р.в.к. на кобальте в среде NaOH составляет (0,040-0,050) В, а порядок реакции равен ~ 1,0. Спектры импеданса, описывающие реакцию выделения кислорода на Со-электроде, по данным работы [6] состоят из одной емкостной полуокружности со смещенным центром. Авторы [8] сообщают, что р.в.к. на кобальте соответствуют две перекрывающиеся полуокружности, при этом диаметр ВЧ-полуокружности значительно меньше диаметра НЧ-полуокружности.

Рис. 5. Спектры импеданса CoSi в 1,0 M NaOH при *E*, B: 1 - 0,70, 2 - 0,75, 3 - 0,80Fig. 5. Impedance spectra for CoSi in 1.0 M NaOH at *E*, V: 1 - 0.70, 2 - 0.75, 3 - 0.80

Рис. 6. Спектры импеданса NiSi в 1,0 М NaOH при *E*, В: 1 – 0,65, 2 – 0,70, 3 – 0,75, 4 – 0,80 Fig. 6. Impedance spectra for NiSi in 1.0 M NaOH at *E*, V: 1 – 0.65, 2 – 0.70, 3 – 0.75, 4 – 0.80

При изучении кинетики р.в.к. на Ni-электроде в растворах NaOH были получены тафелевские константы ~ (0,035-0,040) В [5, 7] и порядок реакции ~ (0,95-1,1) [7]. Авторы работы [17] сообщают, что константа Тафеля при потенциалах р.в.к. составляет ~ 0,040 В, а dE/dpH = -0,103 В. Расчет порядка реакции из данных [17] дает величину 1,6-1,9. Выделение кислорода на Ni-электроде согласно [7] описывается спектрами импеданса, представляющими две полуокружности с близкими постоянными времени.

Величины тафелевского наклона, порядка реакции по ионам OH^- и производной dE/dpH, полученные для Со- и Ni-электродов разными авторами, удовлетворительно согласуются с параметрами кинетики р.в.к., установленными для CoSi- и NiSi-электродов. Несоответствие отмечается лишь для величины dlgi/dpH. Однако, учитывая увеличение истинной площади поверхности электродов вследствие селективного растворения кремния (тем более интенсивного, чем выше концентрация щелочного электролита), действительный порядок р.в.к. на силицидах кобальта и никеля будет меньше рассчитанной величины. Импедансные измерения на CoSi и NiSi также свидетельствуют об обогащении поверхностного слоя этих силицидов металлом и продуктами его окисления и об определяющей роли металлического компонента в кинетике р.в.к.

Авторами [7, 8] для моделирования р.в.к. на Со- и Ni-электродах в щелочном электролите предложена эквивалентная схема, представленная на рис.4б. Эта схема также может быть использована для моделирования р.в.к. на CoSi- и NiSiэлектродах в щелочных средах. В схеме на рис. 4б элементы R_s , R_1 , R_2 , C_2 и CPE₁ для силицидов кобальта и никеля имеют тот же физический смысл, что и для силицида железа. Значения параметра χ^2 для схемы на рис. 46 при описании спектров импеданса CoSi и NiSi составляют (4-10)·10⁻⁵.

Значения параметров эквивалентной схемы (рис. 4б) для FeSi, CoSi и NiSi приведены в таблице. В связи с тем, что на спектрах импеданса силицида кобальта ВЧ-полуокружность проявляется в достаточно узком диапазоне частот, определение параметров эквивалентной схемы усложняется, поэтому расчет для CoSi проведен лишь по цепочке R_2C_2 , учитывающей адсорбцию интермедиата на поверхности электрода.

Поляризационное сопротивление в реакции выделения кислорода на FeSi-электроде в растворе 0,1М NaOH, определенное как $R = R_1 + R_2$, линейно зависит от потенциала: наклон E,lg(1/R)-кривой равен 0,064 В. Расчет порядка реакции и тафелевских констант для растворов (0,5-5,0) М NaOH из импедансных измерений (на основе диаметра ВЧполуокружности (рис. 3)) дает удовлетворительное согласие с данными, полученными из поляризационных измерений: константа Тафеля составляет (0,138-0,159) В, а $(dlgi/dpH)_{E=0,85B} \approx 1,3.$ Зависимость поляризационного сопротивления р.в.к. на CoSi- и NiSi-электродах от величины поляризации также линейна: наклон тафелевских зависимостей для силицидов кобальта и никеля в растворах (0,1-5,0) М NaOH составляет (0,050-0,055) В и (0,040-0,051) В соответственно. Величина наклона lg(1/R), lgC_{NaOH} -кривой для CoSi при E = 0,75 В равна 2,0; для NiSi при *E* = 0,70 B – 2,1.

Таблица Значения параметров эквивалентной схемы на рис. 4б *Table*. The values of the equivalent circuit parameters

in Fig. 40					
Е, В	R_1 ,	R_2 ,	<i>C</i> ₂ ,	$Q_1 \cdot 10^3$,	n.
	Ом·см ²	Ом·см ²	Ф∙см ⁻²	$\Phi \cdot c M^{-2} \cdot c^{(p-1)}$	p_1
FeSi/0,1M NaOH					
0,80	6860	51150	0,0005	0,0066	0,937
0,85	1690	2430	0,0008	0,0063	0,941
0,90	610	250	0,0012	0,0061	0,945
0,95	254	41,5	0,0009	0,0068	0,936
CoSi/1,0M NaOH					
0,70	_	3250	0,0102	—	_
0,75	_	245	0,0088	—	_
0,80	_	30,1	0,0074	—	_
NiSi/1,0M NaOH					
0,65	50,9	2208	0,0016	4,30	0,889
0,70	29,7	62,3	0,0021	3,49	0,907
0,75	0,11	9,2	0,0011	3,36	0,766
0,80	0,09	2,0	0,0010	2,47	0,779

Для силицида кобальта ВЧ-полуокружность, наблюдаемая при $f \sim (10^4 - 10^5)$ Гц (рис. 5), описывает перенос заряда через межфазную гра-

ницу электрод/электролит в поле двойного электрического слоя. Значительное смещение временной константы, соответствующей ВЧ-полуокружности, с ростом поляризации электрода в область высоких частот связано с уменьшением сопротивления переноса заряда (сопротивление R_1) и одновременным снижением двойнослойной емкости (оценка может быть произведена на основе параметра Q_1 элемента постоянной фазы СРЕ₁ [18]) в результате частичной блокировки поверхности электрода молекулами кислорода. Уменьшение параметра Q_1 с ростом поляризации FeSi и CoSi (таблица) также обусловлено экранированием электродной поверхности.

выводы

Исследованы кинетические закономерности реакции выделения кислорода на моносилицидах железа, кобальта и никеля в растворах (0,1-5,0) M NaOH. Величины *dE/d*lgi, *d*lgi/dpH, *dE/d*pH для FeSi в (0,5-5,0) М NaOH составляют соответственно (0,140-0,162) В, 1,2 и -0,202 В; в 0,1М NaOH константа Тафеля равна 0,066 В. Выделение кислорода на CoSi в растворах NaOH различной концентрации характеризуется параметрами *dE/d*lg*i* = (0,048-0,055) B, *d*lg*i*/*d*pH = 1,9, *dE/d*pH = = -0,099 В; на NiSi эти параметры равны соответственно (0,040-0,050) В, 2,1 и -0,095 В. На основе поляризационных и импедансных измерений установлено, что выделение кислорода на FeSi-, CoSi- и NiSi-электродах в щелочном электролите обнаруживает закономерности, характерные для Fe-, Со- и Ni-электродов.

Работа выполнена при финансовой поддержке РФФИ (проект № 14-03-31016 мол а).

ЛИТЕРАТУРА

- Антропов Л.И. Теоретическая электрохимия. М.: Высш. шк. 1984. 519 с.;
 Antropov L.I. Theoretical Electrochemistry. М.: Vyssh. shk.
- 1984. 519 p. (in Russian).
 Iseki S., Ohashi K., Nagaura S. // Electrochim. Acta. 1972. V. 17. N 12. P. 2249-2265.
- 3. Monahov B., Pavlov D., Petrov D. // J. Power Sources. 2000. V. 85. N 1. P. 59-62.
- 4. Reier T., Oezaslan M., Strasser P. // ACS Catalysis. 2012. V. 2. N 8. P. 1765-1772.
- Елина Л.М., Борисова Т.И., Залкинд Ц.И. // ЖФХ. 1954. Т. 28. № 5. С. 785-796; Elina L.M., Borisova T.I., Zalkind Ts.I. // Zhurn. Fizich.
- khimii. 1954. V. 28. N 5. P. 785-796 (in Russian).
 6. Willems H., Kobussen A.G.C., De Wit J.H.W., Broers G.H.J. // J. Electroanal. Chem. 1984. V. 170. P. 227-242.
- Lyons M.E.G., Brandon M.P. // Int. J. Electrochem. Sci. 2008. V. 3. P. 1386-1424.
- 8. Lyons M.E.G., Brandon M.P. // Int. J. Electrochem. Sci. 2008. V. 3. P. 1425-1462.
- Lyons M.E.G., Brandon M.P. // Int. J. Electrochem. Sci. 2008. V. 3. P. 1463-1503.

- Doyle R.L., Lyons M.E.G. // Phys.Chem.Chem.Phys. 2013. V.15. P. 5224-5237.
- 11. Пантелеева В.В., Игуменищева А.В., Шеин А.Б. // Вестн. Перм. ун-та. Химия. 2012. Вып. 3(7). С. 28-44; Panteleeva V.V., Igumenishcheva A.V., Shein A.B. // Vestn. Perm. un-ta. Khimiya. 2012. N 3(7). P. 28-44 (in Russian).
- Пантелеева В.В., Шеин А.Б. // Изв. вузов. Химия и хим. технология. 2013. Т. 56. Вып. 4. С. 59-64;
 Panteleeva V.V., Shein A.B. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2013. V. 56. N 4. P. 59-64 (in Russian).
- Пантелеева В.В., Шеин А.Б. // Изв. вузов. Химия и хим. технология. 2014. Т. 57. Вып. 2. С. 75-81;
 Panteleeva V.V., Shein A.B. // Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2014. V. 57. N 2. P. 75-81 (in Russian).
- Lyons M.E.G., Brandon M.P. // J. Electroanal. Chem. 2009. V. 631. P. 62-70.

Кафедра физической химии

- Кичигин В.И., Шерстобитова И.Н., Шеин А.Б. Импеданс электрохимических и коррозионных систем. Пермь: Перм. гос. ун-т. 2009. 239 с.;
 Kichigin V.I., Sherstobitova I.N., Shein A.B. Impedance of electrochemical and corrosion systems. Perm: Perm. gos. unt. 2009. 239 p. (in Russian).
- Willems H., Kobussen A.G.C., Vinke I.C., De Wit J.H.W., Broers G.H.J. // J. Electroanal. Chem. 1985. V. 194. P. 287-303.
- Волчкова Л.М., Красильщиков А.И. // ЖФХ. 1949. Т. 23. № 4. С. 441-444;
 Volchkova L.M., Krasil'shchikov A.I. // Zhurn. Fizich. Khimii. 1949. V. 23. N 4. P. 441-444 (in Russian).
- Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. J. Wiley and Sons. Hoboken. N. J. 2008. 533 p.

УДК 544.653.23

К.С. Чемезова, Н.М. Хлынова

ОБРАЗОВАНИЕ АНОДНОЙ АРСЕНАТНОЙ ПЛЕНКИ НА СЕРЕБРЯНОМ ЭЛЕКТРОДЕ

(Тюменский государственный нефтегазовый университет) e-mail: <u>khlinova@tsogu.ru</u>

На вольтамперограммах электрорастворения осадков, образующихся на серебряном электроде в растворах, содержащих арсенат-ионы, регистрируется один пик тока. Количество осадка, образовавшегося на поверхности электрода в анодном процессе, пропорционально концентрации арсенат-ионов в растворе и может быть использовано для их определения. Рекомендуются оптимальные условия электроосаждения и электрорастворения осадка.

Ключевые слова: электроосаждение, электрорастворение, серебряный электрод, арсенатная пленка

Исследование системы серебряный электрод – анодная пленка фосфата серебра проводилось в работе [1]. Наличие микроконцентраций арсенат-ионов в растворе также приводит к образованию малорастворимого осадка на поверхности серебряного электрода.

В данной работе изучено образование и электрорастворение анодной арсенатной пленки на поверхности серебряного электрода методом инверсионной вольтамперометрии. На основании приведенных исследований рекомендованы условия электроосаждения и электрорастворения осадка, оптимальные для определения микроколичеств арсенат-ионов в растворе. Исследования велись с помощью полярографа ПУ-1, совмещенного с компьютером, методом инверсионной вольтамперометрии на стационарном серебряном электроде. Использовалась трехэлектродная ячейка, во избежание попадания хлорид-ионов в раствор в качестве вспомогательного и электрода сравнения применялись насыщенные меркурсульфатные электроды^{*}. Постоянство гидродинамических условий достигалось перемешиванием раствора с помощью магнитной мешалки MM3M.

^{*} Потенциал насыщенного меркурсульфатного электрода относительно потенциала насыщенного каломельного электрода составляет 0,39 В