ОСОБЕННОСТИ КИНЕТИКИ РЕАКТИВНО-ИОННОГО ТРАВЛЕНИЯ SiO $_2$ В СМЕСЯХ СF $_4$ + Ar + O $_2$ И С $_4$ F $_8$ + Ar + O $_2$

А.М. Ефремов, А.М. Соболев, К.-Н. Кwon

Александр Михайлович Ефремов*, Александр Михайлович Соболев

Ивановский государственный химико-технологический университет, Шереметевский просп., 7, Иваново, Российская Федерация, 153000

E-mail: efremov@isuct.ru*, ajlekcandr1213@mail.ru

Kwang-Ho Kwon

Korea University, 208 Seochang-Dong, Chochiwon, Korea, 339-800 E-mail: kwonkh@korea.ac.kr

Проведено исследование влияния соотношения Ar/O₂ на характеристики газовой фазы и кинетику травления SiO₂ в плазме смесей $CF_4 + Ar + O_2$ и $C_4F_8 + Ar + O_2$ в условиях индукционного ВЧ 13,56 МГц разряда. В качестве постоянных внешних параметров выступали доля фторуглеродного компонента в плазмообразующей смеси (50%), общее давление газа (6 мтор), вкладываемая мощность (700 Bm) и мощность смещения (200 Bm). Было найдено, что полное замещение аргона на кислород в обеих смесях характеризуется немонотонным изменением (с максимумом при ~ 25% Ar + 25% O_2) скорости травления SiO₂ и монотонным ростом скорости травления фоторезиста при более высоких абсолютных значениях скоростей в плазме на основе CF4. Стационарные концентрации активных частиц определялись при совместном использовании диагностики плазмы зондами Лангмюра и 0-мерном (глобальном) моделировании кинетики плазмохимических проиессов. Соответствующие результаты показали, что обе газовые системы характеризуются близкими параметрами электронной и ионной компонент плазмы, но существенно различаются по кинетике нейтральных частиц, особенно в присутствии О2. Последняя особенность обуславливает противоположные изменения как концентрации атомов F, так и эффективной вероятности ионно-стимулированной химической реакции в зависимости от параметра Ar/O2. Взаимосвязи между видом фторуглеродного компонента и кинетикой гетерогенных процессов анализировались с помощью набора параметров, характеризующих газовую фазу (плотностей потоков частиц и их отношений). На основании этого анализа предположено, что рост содержания O_2 в смеси $CF_4 + Ar + O_2$ со слабой полимеризационной нагрузкой на обрабатываемую поверхность снижает вероятность реакции $SiO_2 + F$ через снижение эффективности деструкции оксидных связей и десорбции продуктов травления из-за снижения плотности потока энергии ионов. Напротив, рост содержания O_2 в смеси $C_4F_8 + Ar$ + О₂ с высокой полимеризационной нагрузкой способствует росту эффективной вероятности взаимодействия за счет снижения толщины фторуглеродной полимерной пленки и облегчения доступа атомов F к обрабатываемой поверхности.

Ключевые слова: SiO₂, травление, полимеризация, поток атомов фтора, поток энергии ионов, эффективная вероятность взаимодействия

FEATURES OF SiO₂ REACTIVE-ION ETCHING KINETICS IN CF₄ + Ar + O₂ AND C₄F₈ + Ar + O₂ GAS MIXTURES

A.M. Efremov, A.M. Sobolev, K.-H. Kwon

Alexander M. Efremov*, Alexander M. Sobolev

Ivanovo State University of Chemistry and Technology, Sheremetevskiy ave., 7, Ivanovo, 153000, Russia E-mail: efremov@isuct.ru*, ajlekcandr1213@mail.ru

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020. V. 63. N 9

A.M. Efremov, A.M. Sobolev, K.-H. Kwon

Kwang-Ho Kwon

Korea University, 208 Seochang-Dong, Chochiwon, Korea, 339-800 E-mail: kwonkh@korea.ac.kr

The effect of Ar/O_2 mixing ratio on gas-phase characteristics and SiO₂ etching kinetics in $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ plasmas was studied under conditions of 13.56 MHz inductive RF discharge. The constant processing parameters were fraction of fluorocarbon component in a feed gas (50%) total gas pressure (6 mTorr), input power (700 W) and bias power (200 W). It was found that the full substitution of Ar for O2 in both gas systems results in non-monotonic (with a maximum at ~ 25% Ar + 25% O_2) Si O_2 etching rates as well as in monotonically increasing photo resist etching rate with higher absolute values for CF_4 -containing mixture. The steady-state densities of active species were determined using a combination of plasma diagnostics by Langmuir probes and 0-dimensional (global) plasma modeling. Corresponding results indicated that both gas systems are characterized by quite close parameters of electron and ion components while exhibit sufficient differences in the kinetics of neutral species, especially in the presence of O_2 . The latter produces opposite changes in F atom density as well as in effective probability of ion-assisted chemical reaction vs. Ar/O_2 mixing ratio. Relationships between type of fluorocarbon component and heterogeneous process kinetics were analyzed through the set of gas-phaserelated parameters (fluxes, flux-to-flux ratios) characterizing chemical etching pathways for SiO_2 and formation/destruction balance for the fluorocarbon polymer film. It was suggested that the transition toward O_2 -rich plasma in the low-polymerizing $CF_4 + Ar + O_2$ plasma suppresses the effective probability for $SiO_2 + F$ reaction through decreasing efficiency for oxide bond breaking and desorption of etching products due to decreasing ion energy flux. Oppositely, an increase in O_2 content in the high-polymerizing $C_4F_8 + Ar + O_2$ mixture lifts up the effective reaction probability by decreasing fluorocarbon film thickness and providing better access of F atoms to the etched surface.

Key words: SiO₂, etching, polymerization, fluorine atom flux, ion energy flux, effective reaction probability

Для цитирования:

Ефремов А.М., Соболев А.М., Kwon K.-H. Особенности кинетики реактивно-ионного травления SiO_2 в смесях $CF_4 + Ar + O_2$ и $C_4F_8 + Ar + O_2$. Изв. вузов. Химия и хим. технология. 2020. Т. 63. Вып. 9. С. 21–27

For citation:

Efremov A.M., Sobolev A.M., Kwon K.-H. Features of SiO₂ reactive-ion etching kinetics in $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ gas mixtures. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* [Russ. J. Chem. & Chem. Tech.]. 2020. V. 63. N 9. P. 21–27

INTRODUCTION

Recently, silicon and silicon-based materials (SiO_2, Si_3N_4, SiC) still keep the leading position in modern electronic device technology. Particularly, SiO_2 is widely used as the gate dielectric in field-effect structures as well as frequently plays the roles of inter-element insulation or final passivation [1-3]. Since most of these applications assume the precise patterning of SiO_2 layers in fluorocarbon (C_xF_y) gas plasmas [3, 4], the optimization of corresponding dry etching processes is a key problem for achieving advanced device characteristics. For this purpose, one must clearly understood the interconnections between processing conditions, plasma chemistry and heterogeneous kinetics.

Until now, there were enough works reported on etching characteristics and mechanisms for SiO_2 in fluorocarbon gas plasmas [3-13]. Results of these works allow one to conclude that: 1) In all fluorocarbon-based gas chemistries, the dominant contribution to the chemical etching of SiO_2 is provided by F atoms [5-7]. The much weaker chemical effect from CF_x radicals due to the ion-induced dissociation of their adsorbed states has no principal influence on the overall etching kinetics [13].

2) The patterning of SiO₂ is possible under the conditions of reactive-ion etching process and requires the ion bombardment energy of ~ 200-300 eV. The reason is that the spontaneous reaction SiO₂ + F is thermodynamically prohibited, as follows from the comparison of Si-O (~ 799 kJ/mol) and Si-F (~ 552 kJ/mol) bond dissociation energies [14]. Therefore, the role of ion bombardment includes a) the destruction of Si-O bonds to produce the chemisorption sites for F atoms; and b) the desorption heterogeneous reaction products which appear in a form of the nonsaturated low volatile SiF_x layer [5, 6, 8]. 3) In high-polymerizing fluorocarbon gases (y/x < 3 in the C_xF_y molecule), the SiO₂ etching process is affected by the fluorocarbon (FC) polymer film grown at the plasma/etched surface interface [5-7]. Since the thick (> 10 nm) FC film limits the transport of F atoms to the target material as well as reduces the effective ion bombardment energy, the SiO₂ etching kinetics strongly depends on the film thickness and thus, on the polymer deposition/decomposition dynamics [6-8].

The problem is that the most of existing works have the pure experimental nature and thus, did not analyze the relationships between heterogeneous effects and gas-phase plasma characteristics. That is why the basic principles to control the SiO_2 etching process by plasma-related operating parameters are still not clear enough. Another negative issue is that studies of different gas systems were performed for different processing conditions and reactor types. Such situation limits the possibility to compare corresponding results and thus, to select the gas mixture for achieving the desirable combination of etching rate, anisotropy and selectivity in the given etching process.

In our previous work, we have performed the comparative study of plasma chemistry in $CF_4 + Ar +$ $+O_2$ and $C_4F_8 + Ar + O_2$ gas systems [15]. Thought some reasonable data on steady-state plasma parameters and gas-phase composition were obtained, these were not applied for the analysis of Si and/or SiO₂ etching process. Therefore, since interconnections between gas-phase plasma parameters and heterogeneous kinetics in given gas systems are not still clear, differences in Si and SiO₂ etching mechanisms are not completely understood. Such situation retards the optimization of plasma etching technology for siliconbased materials. From the others side, results of Refs. [10, 15, 16] clearly indicated that Ar/O₂ mixing ratio at constant fraction of fluorocarbon component is a powerful tool to adjust densities of F atoms and polymerizing radicals. Accordingly, the idea of current work was to perform the comparative study of SiO_2 etching kinetics in $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ plasmas with various Ar/O₂ mixing ratios as well as to analyze the relationships between gas-phase plasma parameters and heterogeneous reaction pathways determining the features of SiO₂ etching mechanisms.

EXPERIMENTAL AND MODELING DETAILS

Experiments with both $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ gas mixtures were performed in the planar inductively coupled plasma (ICP) reactor described in our previous works [15, 16]. Plasma was excited using a 13.56 MHz radio-frequency (RF)

power supply. Another RF power supply was connected to the chuck electrode in order to control the ion bombardment energy (ε_i) through the negative DC bias voltage $(-U_{dc})$. The chuck electrode was equipped by the water-flow cooling system that allowed one to maintain its temperature at ~17 °C. In all experimental series, the constant parameters were gas pressure (p = 6 mTorr), total gas flow rate (q = 40 sccm), input power (W = 900 W) and bias power (W_{dc} = 200 W). The variable parameter was the Ar/O_2 mixing ratio. The initial composition of each gas mixture was set by adjusting partial flow rates for corresponding gases. Particularly, content of CF₄ or C₄F₈ was always 50% while the remaining half was represented by various fractions of Ar and O2. Accordingly, an increase in O_2 fraction $y(O_2)$ from 0-50% corresponded to the full substitution of Ar for O₂.

Etched samples (parts of Si wafer with the 500 nm-thick SiO₂ layer) had the size of about 2×2 cm and was partially masked by the photoresist AZ1512 (positive). The etching rates for SiO₂ and photoresist (PR) were determines as $R = \Delta h/\tau$, where Δh is the etched depth determined using surface profiler Alpha-Step 500 (Tencor), and $\tau = 2$ min is the processing time. In preliminary experiments, it was found that, under the given set of processing conditions, both etching processes are featured by the steady-state kinetic regime with the negligible influence of reaction products on gas-phase plasma parameters.

Plasma diagnostic was performed by double Langmuir probe (DLP2000, Plasmart Inc.). The probe setup had the built-in tip cleaning system for measurements in polymerizing plasmas. The treatment of voltage-current curves with using the well-known statements of probe theory [5, 17] provided information on electron temperature (T_e) and ion current density (J_+). In order to minimize the effect of fluorocarbon polymer film on diagnostics results, the probe tip was additionally cleaned in 50% Ar + 50% O₂ plasma for 1 min before and after each measurement. As a result, there were no sufficient differences between data points recorded under one and the same experimental conditions.

Plasma modeling was represented by 0-dimensional (global) kinetic model operated with volume-averaged plasma characteristics. Kinetic schemes (reaction sets with corresponding rate coefficients), modeling approaches and algorithm were taken from our previous works [15, 16, 18]. Input model parameters were experimental data on T_e and J_+ . As output parameters, the model yielded steady-state densities of plasma active species and their fluxes on the etched surface. Basic assumptions for the analysis of heterogeneous kinetics were also the same with those used in our previous works [15, 16, 19-21]:

1) Any chemical etching pathway (interactions of F atoms with the SiO₂ surface as well as O atoms with the fluorocarbon polymer film) has the rate of $\gamma_{R,X}\Gamma_X$ [5, 20-23], where Γ_X (X = F or O) is the flux of corresponding atomic species with the gas-phase density [X], and $\gamma_{R,X}$ is the effective reaction probability. Generally, the constant surface temperature allows one to assume $\gamma_{R,X} \approx \text{const}$ [5] as well as to associate changes in the chemical etching pathway with changes in Γ_X only.

2) Any physical etching pathway (the breaking of Si-O bonds, the destruction of the fluorocarbon polymer film as well as the ion-stimulated desorption of reaction products) has the rate of $Y_S\Gamma_+$ [21-24], where Y_S is the ion-type-averaged sputtering yield, and $\Gamma_+ \approx J_+/e$ is the ion flux. According to Refs. [15, 16], one can suggest $Y_S \sim (M_i\epsilon_i)^{1/2}$, where M_i is the effective ion molar mass, $\epsilon_i = e(-U_f - U_{dc})$ is the ion bombardment energy, and U_f is the floating potential. As such, the change in the physical etching pathway may be traced by the parameter $(M_i\epsilon_i)^{1/2}\Gamma_+$, characterizing the ion energy flux.

3) The formation of the fluorocarbon polymer film is provided by CF_x (x = 1, 2) radicals as well as appears to be slower in fluorine-rich plasmas [6-9]. As such, the polymer deposition rate is characterized by the Γ_{pol}/Γ_F ratio, where Γ_{pol} is the total flux of polymerizing radicals. Accordingly, the change in fluorocarbon polymer film thickness due to destruction by ion bombardment and etching by oxygen atoms may be traced by the parameters $\Gamma_{pol}/(M_i\epsilon_i)^{1/2}\Gamma_+\Gamma_F$ and $\Gamma_{pol}/\Gamma_0\Gamma_F$, respectively.

RESULTS AND DISCUSSION

From Fig. 1(a), it can be seen that SiO_2 etching rates in oxygen-free CF_4 + Ar and C_4F_8 + Ar plasmas are quite close with typical values \sim 100 nm/min. An increase in O_2 fraction in both gas systems (i.e. the substitution of Ar for O_2) results in similar non-monotonic $R = f(y(O_2))$ functions which exhibit maximums at ~ 25% O_2 . The main differences between two gas systems are only in quantitative scale and may be summarized as follows. First, under the condition of $y(O_2) > 0$ the CF₄-based gas system provides the systematically higher SiO₂ etching rates compared with the C_4F_8 -based one. And secondly, the substitution of Ar with O2 has the noticeably stronger effect on the SiO₂ etching process in $CF_4 + Ar + O_2$ plasma. Particularly, the change in $y(O_2)$ from 0-25% causes the almost twofold (102-200 nm/min) increase in SiO₂ etching rate in $CF_4 + Ar + O_2$ plasma while the corresponding effect in $C_4F_8 + Ar + O_2$ plasma is only 1.3 times (97-124 nm/min). As such, the principal

questions for understanding of SiO_2 etching mechanism in given gas systems are: 1) what mechanism does produce the maximum on SiO_2 etching rate as function of $y(O_2)$ and 2) what are the reasons providing the quantitative differences in SiO_2 etching rates for CF₄- and C₄F₈-based gas chemistries under one and the same operating conditions?

Fig. 1. Parameters characterizing the SiO₂ etching kinetics in CF₄ +Ar + O₂ (solid lines) and C₄F₈ + Ar + O₂ (dashed lines) plasmas. In Fig. a): 1 – SiO₂ etching rate; 2 – etching selectivity over the photoresist. In Fig. b): effective reaction probability ($\gamma_{R,F}$) Puc. 1. Параметры, характеризующие кинетику травления SiO₂ в плазме CF₄ + Ar + O₂ (сплошная линия) и C₄F₈ + Ar + O₂ (пунктир). На рис. а): 1 – скорость травления SiO₂; 2 – селективность травления по отношению к фоторезисту. На рис. б): эффективная вероятность взаимодействия ($\gamma_{R,F}$)

From previously published works, it can be understood that SiO_2 etching rates shown in Fig. 1(a) may be expressed as $R_{phys} + R_{chem}$ [21-23], where R_{phys} is the rate of physical sputtering and R_{chem} is the rate of ion-assisted chemical reaction between SiO₂ and F atoms. The experiments showed that, under conditions of given study, the SiO₂ etching rate in Ar plasma is ~ 5 nm/min. As such, the condition $R_{phys} \ll R_{chem} \approx R$ takes place for both gas mixtures. Then, taking in mind that $R_{chem} = \gamma_{R,F}\Gamma_{F,}$ one can suggest that the quantitative differences in SiO₂ etching rates for CF₄- and C₄F₈-based gas mixtures mentioned in Fig. 1(a) may be connected with differences in both gas-phase plasma characteristics (through [F] and $\Gamma_{\rm F}$) and the heterogeneous kinetics (through $\gamma_{R,F}$). Accordingly, the reasons which may cause the non-monotonic changes of SiO_2 etching rate vs. the O_2 fraction in a feed gas are: 1) the maximum on the $\Gamma_{\rm F}$ = $f(y(O_2))$ curve due to the change in formation/decay balance for F atoms in the presence of oxygen; and 2) monotonic, but opposite tendencies for both $\Gamma_{\rm F}$ and $\gamma_{R,F}$. Particularly, even at constant surface temperature, $\gamma_{R,F}$ may be dependent on the fraction of "active" surface which provides the chemisorption of F atoms. Obviously, the latter is sensitive to the intensity of ion bombardment (through the Si-O bong breaking, desorption of reaction products and physical destruction of fluorocarbon polymer film) and O atom flux (through the chemical destruction of fluorocarbon polymer film). Therefore, the adequate interpretation of SiO₂ etching mechanism in $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ plasmas requires the study of plasma parameters and gas phase composition.

The basic properties of $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ plasmas have been discussed in detail in Refs. [15, 16]. As such, it seems to be reasonable just to summarize their principal features which are important for the purpose of given study at given process conditions. Particularly, one must underline several effects taking place during the substitution of Ar with O_2 at constant fraction of fluorocarbon component:

1) Both gas mixtures demonstrate similar effect of $y(O_2)$ on electron temperature and ion current density (Tab. 1). A decrease in Te (3.6-3.4 eV for $CF_4 + O_2 + Ar$ and 4.8-3.1 eV for $C_4F_8 + O_2 + Ar$ at 0-50% O₂) is connected with increasing electron energy loss in low-threshold excitations (vibrational, electronic) for O₂ itself and molecular products of plasma chemical reactions. The decreasing tendency for J_+ is produced by corresponding changes in ion densities n_+ (4.2·10¹⁰-3.2·10¹⁰ cm⁻³ for CF₄ + O₂ + Ar and 4.2·10¹⁰-3.7·10¹⁰ cm⁻³ for C₄F₈ + O₂ + Ar at 0-50% O_2). The reasons are that a) decreasing T_e lowers ionization rate coefficients for all types of neutral species; and b) an increase in $y(O_2)$ enriches the gas phase by oxygen-containing electronegative species that accelerate decay for both positive ions and electrons through the ion-ion recombination and dissociative attachment, respectively.

Electro-physical plasma parameters											
Табли	ųa.	Элект	рофизи	чески	е па	рамет	ры і	плазмн	5		

Table

$\mathbf{v}(\mathbf{O})$	C.	$F_4 + Ar + C$	D_2	$C_4F_8 + Ar + O_2$			
y(O ₂), %	T _e , eV	$J_+, mA/cm^2$	-U _{dc} , V	T _e , eV	$J_+, mA/cm^2$	-U _{dc} , V	
0	3.60	1.10	137	4.81	1.21	145	
25	3.53	1.01	149	4.01	1.08	167	
50	3.40	0.95	153	3.12	0.91	177	

2) Both gas mixtures exhibit quite similar changes in ion flux and ion bombardment energy (Fig. 2a). A weak increase in negative dc bias at constant W_{dc} (- $U_{dc} = 137-153$ V for $CF_4 + O_2 + Ar$ and 145-177 V for $C_4F_8 + O_2 + Ar$ at 0-50% O_2) and thus, in ion bombardment energy ($\varepsilon_i = 159-173$ eV and 175-196 eV for CF_4 - and C_4F_8 -based gas mixtures, respectively) does not compensate the decrease in Γ_+ . Accordingly, the monotonic decrease in the parameter ($M_i\varepsilon_i$)^{1/2} Γ_+ ($6.1\cdot10^{17}$ - $4.9\cdot10^{17}$ eV^{1/2}cm⁻²s⁻¹ for $CF_4 + O_2 + Ar$ and $7.3\cdot10^{17}$ - $5.4\cdot10^{17}$ eV^{1/2}cm⁻²s⁻¹ for $C_4F_8 + O_2 + Ar$ at 0-50% O_2) suggests that the substitution of Ar for O_2 suppresses the physical etching pathway.

3) Both gas mixtures are characterized by similar decreasing trends for densities and fluxes of

polymerizing radicals CF_x (x = 1, 2), but by opposite changes in corresponding values for F atoms (Fig. 2b). The monotonic increase in F atom density in CF_4 + O_2 + Ar plasma ([F] = 5.6 $\cdot 10^{12}$ -5.4 $\cdot 10^{13}$ cm⁻³ at 0-50% O_2) is provided by the effective formation of these species in R1: $CF_x + O \rightarrow CF_{x-1}O + F$, R2: $CF_x +$ $+ O(^{1}D) \rightarrow CF_{x-1}O + F$ and R3: $F_{2} + O \rightarrow FO + F$ (with a consequent electron-impact dissociation of fluorine-containing reaction products) that overcompensate the decreasing rate of R4: $CF_x + e \rightarrow CF_{x-1} +$ + F + e. The monotonic decrease in F atom density in $C_4F_8 + O_2 + Ar$ plasma ([F] = $8.0 \cdot 10^{12} - 8.6 \cdot 10^{11}$ cm^{-3} at 0-50% O₂) results from the same change in the rate of R4 with the almost negligible contribution from the side of R1-R3. The reason is that the formation rates for both O and O(¹D) in R5: $O_2 + e \rightarrow$ \rightarrow 2O + e, R6: O₂ + e \rightarrow O + O(¹D) + e and R7: O + e \rightarrow \rightarrow O(¹D) + e are sufficiently limited by the decay of O_2 molecules through R8: $C + O_2 \rightarrow CO + O$. In addition, the low efficiency of R1-R3 provides also the much weaker fall in the density of polymerizing radicals compared with CF₄-based gas system.

4) The oxygen-free C_4F_8 + Ar gas system provides the much thicker FC polymer film compared with CF_4 + Ar one [6, 7]. Such situation results from the sufficient difference in polymer deposition rates $(\Gamma_{pol}/\Gamma_F = 6.4 \text{ for } C_4F_8 + \text{Ar vs. } 0.1 \text{ for } CF_4 + \text{Ar})$ at quite close polymer destruction rates by ion bombardment $((M_i\epsilon_i)^{1/2}\Gamma_+ = 7.2 \cdot 10^{17} \text{ eV}^{1/2}\text{cm}^{-2}\text{s}^{-1} \text{ for } C_4F_8$ + Ar vs. $6.1 \cdot 10^{17} \text{ eV}^{1/2}\text{cm}^{-2}\text{s}^{-1})$. An increase in y(O₂) reduces the thickness of the FC polymer film in both gas mixtures, as follows from the rapidly decreasing $\Gamma_{pol}/\Gamma_0\Gamma_F$ ratios ($2.8 \cdot 10^{-18} \text{ cm}^2\text{s}$ for C_4F_8 + Ar and $1.9 \cdot 10^{-18} \text{ cm}^2\text{s}$ at 5-50% O₂). The latter implies also that the 50% C_4F_8 + 50% O₂ plasma keeps the much higher polymerization ability compared with corresponding CF₄-based gas mixture.

The comparison of Figs. 1(a) and 2 allows one to formulate two principal features of the SiO₂ etching mechanisms in $CF_4 + Ar + O_2$ and $C_4F_8 + Ar + O_2$ plasmas. First, in both gas mixtures, the nonmonotonic etching rates contradict with monotonic changes of both $\Gamma_{\rm F}$ and $(M_{\rm i}\varepsilon_{\rm i})^{1/2}\Gamma_{+}$. And secondly, the similar changes in etching rates correspond to opposite behaviors of $\Gamma_{\rm F}$. Obviously, the last fact also provides the opposite changes in effective reaction probabilities $\gamma_{R,F} = R/\Gamma_F$, as shown in Fig. 1(b). Particularly, it can be seen that the substitution of Ar for O_2 in $CF_4 + Ar + O_2$ gas mixture results in monotonically decreasing $\gamma_{R,F}$ in the range of (3.9-0.52) $\cdot 10^{-2}$ for 0-50% O₂. When neglecting the influence of FC polymer film on the SiO₂ etching kinetics in the lowpolymerizing CF₄-based gas system (that assumes, in fact, the case of non-continuous of very thin continuous FC film), the behavior of $\gamma_{R,F}$ may be associated with the decrease in ion energy flux (Fig. 3). Obviously, this effect appears through decreasing rates of

both oxide bonds breaking and ion-stimulated desorption of reaction products that lowers the fraction of free adsorption sites for F atoms. At the same time, the substitution of Ar with O_2 in $C_4F_8 + Ar + O_2$ gas mixture causes monotonically increasing $\gamma_{R,F}$ in the range of (2.0-20) 10^{-2} for 0-50% O₂. This contradicts with the change in ion energy flux, but shows an agreement with the behavior of $\Gamma_{pol}/\Gamma_0\Gamma_F$ ratio (Fig. 3) which traces the change in the FC film thickness. As the polymer layer retards the access of F atoms to the etched surface, one should reasonably assume that the decreasing FC film thickness accelerates the etching process through increasing effective F atom flux on the FC film/etched surface interface. In addition, it is important to mention that the shape of the $\gamma_{R,F}$ = = $f(\Gamma_{pol}/\Gamma_0\Gamma_F)$ curve shown in Fig. 3 as well as the tendency itself are very close to those obtained for reaction probabilities and etching yields of Si and SiO₂ in high-polymerizing fluorocarbon gas plasmas [6, 8]. Therefore, based on above data, one can conclude that 1) the SiO_2 etching mechanism in both gas systems is represented by ion-assisted chemical reaction in the neutral-flux-limited regime; and 2) in both cases, the non-monotonic SiO_2 etching rate as a function of O_2 fraction in a feed gas results from opposite changes in fluorine atom flux and the effective probability of their reaction with the SiO₂ surface. However, the mechanisms influencing the effective reaction probabilities are different and depend, in general, on the polymerizing ability of the fluorocarbon component.

Finally, we would like to comment the SiO₂/PR selectivity issue which seems to be important for etching process optimization. It was found that the etching rate of PR in both gas systems increases monotonically toward O₂-rich plasmas (260-412 nm/min for $C_4F_8 + Ar + O_2$ and 240-520 nm/min for $CF_4 + Ar + O_2$ at 0-50% O_2). All these are in good agreements with both tendencies and quantitative differences for oxygen atom fluxes, as shown in Fig. 2b. The ratios of SiO₂-to-PR etching rate have the quite close values $(0.37-0.22 \text{ for } C_4F_8 + Ar + O_2 \text{ and } 0.43-0.25 \text{ for}$ $CF_4 + Ar + O_2$ at 0-50% O_2) and exhibit the only weak decrease in the range of 0-25% O₂ (Fig. 1a). As such, the obtaining of maximum SiO₂ etching rates in 25% $O_2 + 25\%$ Ar gas mixtures is not escorted by principal losses in SiO₂/PR etching selectivity.

CONCLUSIONS

In this work, we investigated the possibility of Ar/O₂ mixing ratio in CF₄ + Ar + O₂ and C₄F₈ + Ar + O₂ gas mixtures to adjust steady-state plasma parameters and SiO₂ etching kinetics. It was found that the CF_4 based gas system provides higher etching rates for both SiO₂ and photoresist, and the substitution of Ar with O₂ at constant fraction of any fluorocarbon component results in the non-monotonic (with a maximum at ~ 25% Ar + 25% O_2) SiO₂ etching rates.

Fig. 2. Fluxes of active species on the etched surface in $CF_4 + Ar + O_2$ (solid lines) and $C_4F_8 + Ar + O_2$ (dashed lines) plasmas. In Fig. a): 1 - total positive ion flux; 2 - negative dc bias. In Fig. b):

Рис. 2. Плотности потоков активных частиц на обрабатываемую поверхность в плазме CF₄ + Ar + O₂ (сплошная линия) и $C_4F_8 + Ar + O_2$ (пунктир). На рис. а): 1 – суммарная плотность потока положительных ионов; 2 – отрицательное смещение. На рис. б): "F" – атомы фтора; "pol" – полимеробразующие радикалы (CF₂ + CF); "O" – атомы кислорода

Fig. 3. Effective $SiO_2 + F$ reaction probability in $CF_4 + Ar + O_2$ plasma (solid line) as a function of the parameter $(M_i\epsilon_i)^{1/2}\Gamma_+$ characterizing the ion energy flux on the etched surface. Effective $SiO_2 + F$ reaction probability in $C_4F_8 + Ar + O_2$ plasma (dashed line) as a function of $\Gamma_{pol}/\Gamma_F\Gamma_O$

flux ratio characterizing the fluorocarbon polymer film thickness Рис. 3. Эффективная вероятность взаимодействия SiO₂ + F в плаз-

ме CF₄ + Ar + O₂ (сплошная линия) как функция параметра $(M_{i}\epsilon_{i})^{1/2}\Gamma_{+}$, характеризующего плотность потока энергии ионов на обрабатываемую поверхность. Эффективная вероятность взаимодействия SiO_2+F в плазме $C_4F_8+Ar+O_2$ (пунктир) как функция отношения плотностей потоков Г_{ро/}/Г_FГ_O, характеризующего толщину фторуглеродной полимерной пленки на обрабатываемой поверхности

The comparative study of gas-phase plasma characteristics indicated such principal features as 1) quite close parameters of electron and ion components in both gas systems; 2) the much higher polymerizing ability for C₄F₈-based plasma due to higher formation rates and densities of CF_x (x = 1, 2) radicals; and 3) opposite behaviors of F atom density with increasing O₂ content in a feed gas. The last phenomenon is produced by differences in $CF_x + O \rightarrow CF_{x-1}O +$ + F reaction kinetics due to various loss rates and densities of oxygen atoms. The model-based analysis of SiO₂ etching mechanism in a framework of ionassisted chemical reaction yielded also the opposite behaviors for effective probabilities for the heterogeneous $SiO_2 + F$ reaction. It was suggested that the transition toward O₂-rich plasma in the low-polymerizing $CF_4 + Ar + O_2$ plasma reduces the effective reaction through decreasing efficiency for oxide bond breaking and desorption of etching products due to decreasing ion energy flux. In spite of this, the substitution of Ar with O₂ in the high-polymerizing $C_4F_8 + Ar + O_2$ mixture increases the effective reaction probability by lowering the fluorocarbon film thickness and providing better access of F atoms to the etched surface. The last suggestion is confirmed by the typical correlation (the shape of the curve and the tendency itself) between effective reaction probability and the fluorocarbon film thickness traced by the flux-to-flux ratio for polymerizing radicals, F atoms and O atoms.

The reported study was funded by RFBR, project number 19-07-00804A.

REFERENCES ЛИТЕРАТУРА

- Nojiri K. Dry etching technology for semiconductors. Tokyo: Springer International Publishing. 2015. 116 p.
- Donnelly V.M., Kornblit A. Plasma etching: yesterday, today, and tomorrow. J. Vac. Sci. Technol. 2013. V. 31. P. 050825-48. DOI: 10.1116/1.4819316.
- 3. Advanced plasma processing technology. New York: John Wiley & Sons Inc. 2008. 479 p.
- Chung C.K. Plasma etching. in Encyclopedia of Microfluidics and Nanofluidics. New York: Springer Science+Business Media. 2014. P. 1-18. DOI: 10.1007/978-3-642-27758-0_1251-5.
- Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. New York: John Wiley & Sons Inc. 2005. 757 p.
- Standaert T.E.F.M., Hedlund C., Joseph E.A., Oehrlein G.S., Dalton T.J. Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A. 2004. V. 22. P. 53-60. DOI: 10.1116/1.1626642.
- Schaepkens M., Standaert T.E.F.M., Rueger N.R., Sebel P.G.M., Oehrlein G.S., Cook J.M. Study of the SiO₂-to-Si₃N₄ etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO₂-to-Si mechanism // J. Vac. Sci. Technol. A. 1999. V. 17. P. 26-37. DOI: 10.1116/1.582108.
- Matsui M., Tatsumi T., Sekine M. Relationship of etch reaction and reactive species flux in C₄F₈/Ar/O₂ plasma for SiO₂ selective etching over Si and Si₃N₄. J. Vac. Sci. Technol. A. 2001. V. 19. P. 2089-2096. DOI: 10.1116/1.1376709.
- 9. Kastenmeier B.E.E., Matsuo P.J., Oehrlein G.S. Highly selective etching of silicon nitride over silicon and silicon

dioxide. J. Vac. Sci. Technol. A. 1999. V. 17. P. 3179-3184. DOI: 10.1116/1.582097.

- Son J., Efremov A., Chun I., Yeom G. Y., Kwon K.-H. On the LPCVD-formed SiO₂ etching mechanism in CF₄/Ar/O₂ inductively coupled plasmas: effects of gas mixing ratios and gas pressure. *Plasma Chem. Plasma Proc.* 2014. V. 34. P. 239-257. DOI: 10.1007/s11090-013-9513-1.
- Li X., Ling L., Hua X., Fukasawa M., Oehrlein G.S., Barela M., Anderson H.M. Effects of Ar and O₂ additives on SiO₂ etching in C₄F₈-based plasmas. *J. Vac. Sci. Technol. A.* 2003. V. 21. P. 284-293. DOI: 10.1116/1.1531140.
- Shankaran A., Kushner M.J. Etching of porous and solid SiO₂ in Ar/c-C₄F₈, O₂/c-C₄F₈ and Ar/O₂/c-C₄F₈ plasmas. *J. Appl. Phys.* 2005. V. 97. P. 023307 (1-10). DOI: 10.1063/1.1834979.
- 13. Lele C., Liang Z., Linda X., Dongxia L., Hui C., Tod P. Role of CF_2 in the etching of SiO_2 , Si_3N_4 and Si in fluorocarbon plasma. *J. Semicond.* 2009. V. 30. P. 033005-1 (9). DOI: 10.1088/1674-4926/30/3/033005.
- Handbook of Chemistry and Physics. New York: CRC Press. 2014. 2704 p.
- Chun I., Efremov A., Yeom G.Y., Kwon K.-H. A comparative study of CF₄/O₂/Ar and C₄F₈/O₂/Ar plasmas for dry etching applications. *Thin Solid Films*. 2015. V. 579. P. 136-143. DOI: 10.1016/j.tsf.2015.02.060.
- Efremov A., Lee J., Kim J. On the control of plasma parameters and active species kinetics in CF₄ + O₂ + Ar gas mixture by CF₄/O₂ and O₂/Ar mixing ratios. *Plasma Chem. Plasma Proc.* 2017. V. 37. P. 1445-1462. DOI: 10.1007/s11090-017-9820-z.
- 17. **Shun'ko E.V.** Langmuir probe in theory and practice. Boca Raton: Universal Publishers. 2008. 245 p.
- Lee J., Efremov A., Yeom G.Y., Lim N., Kwon K.-H. Application of Si and SiO₂ etching mechanisms in CF₄/C₄F₈/Ar inductively coupled plasmas for nanoscale patterns. *J. Nanosci. Nanotechnol.* 2015. V. 15. P. 8340-8347. DOI: 10.1166/jnn.2015.11256.
- Ефремов А.М., Мурин Д.Б., Kwon K.-Ĥ. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 4-5. С. 31-36.
 Efremov A.M., Murin D.B., Kwon K.H. Plasma parameters and active species kinetics in CF₄+C₄F₈+Ar gas mixture. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2018. V. 61. N 4-5. P. 31-36. DOI: 10.6060/tcct.20186104-05.5695.
- Ефремов А.М., Мурин Д.Б., Kwon K.-H. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 2. С. 31-37.
 Efremov A., Murin D., Kwon K.-H. Plasma parameters, densities of active species and etching kinetics in C₄F₈+Ar gas mixture. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2019. V. 62. N 2. P. 31-37. DOI: 10.6060/ivkkt.20196202.5791.
- Ефремов А.М., Соболев А.М., Бетелин В.Б., Кwon К.-Н. Параметры и состав плазмы CF₄ + O₂ + Ar и CHF₃ + O₂ + Ar в процессах реактивно-ионного травления. *Изв. вузов. Химия и хим. технология.* 2019. Т. 62. Вып. 12. С. 108-118. DOI: 10.6060/ivkkt.20196212.6032.
 Efremov A.M., Murin D.B., Betelin V.B., Kwon K.H. Pa-

rameters and composition of $CF_4 + O_2 + Ar$ and $CHF_3 + O_2 + Ar$ plasmas in reactive-ion etching processes. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2019. V. 62. N. 12. P. 108-118 (in Russian). DOI: 10.6060/ivkkt.20196212.6032.

- Jin W., Vitale S. A., Sawin H. H. Plasma–surface kinetics and simulation of feature profile evolution in Cl₂+HBr etching of polysilicon. J. Vac. Sci. Technol. A. 2002. V. 20. P. 2106-2114. DOI: 10.1116/1.1517993.
- Gray D.C., Tepermeister I., Sawin H.H. Phenomenological modeling of ion-enhanced surface kinetics in fluorine-based plasma-etching. J. Vac. Sci. Technol. B. 1993. V. 11. P. 1243-1257. DOI: 10.1116/1.586925.
- Efremov A.M., Kim D.P., Kim C.I. Simple model for ionassisted etching using Cl₂/Ar inductively coupled plasma. *IEEE Trans. Plasma Sci.* 2004. V. 32. P. 1344-1351. DOI: 10.1109/TPS.2004.828413.

Поступила в редакцию (Received) 20.01.2020 Принята к опубликованию (Accepted) 20.03.2020

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2020. V. 63. N 9