ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ОРГАНИЧЕСКИХ КИСЛОТ
И ИХ НЕКОТОРЫХ ПРОИЗВОДНЫХ

В.В. Овчинников, А.А. Кулаков, И.Г. Григорьева, С.А. Мальцева

Виталий Витальевич Овчинников *, Алексей Алексеевич Кулаков, Ирина Геннадьевна Григорьева,
Светлана Александровна Мальцева

Кафедра общей химии и экологии, Казанский национальный исследовательский технический университет
им. А.Н. Туполева, ул. К.Маркса, 10, Казань, Российская Федерация, 420111
E-mail: chem_vvo@mail.ru*, alekulakov@yandex.ru, grig406@mail.ru, smaltseva16@yandex.ru

Теплоты парообразования, сгорания, образования, энтропии и теплоемкости в различных фазах различных карбоновых кислот и их производных: ацетатов, эфиров с жирными радикалами, двух-, трех- и четырехосновных кислот (52 соединения) были проанализированы в рамках однопараметровых математических уравнений. Экспериментальные данные всех выбранных одно-, двух-, трех- и четырехосновных кислот были проанализированы и определено, что все термодинамические функции этих типов соединений зависят от числа валентных электронов N, из которого вычитается сумма неподеленных пар электронов g, как это представлено в уравнениях $\Delta_{\text{vap,c,f}}H^\circ = i \pm f (N-g)$ и $S^\circ(C_p) = i \pm f (N-g)$. Коэффициент f в уравнениях находится в рамках 104-113 кДж моль$^{-1}$ электрон$^{-1}$, что соответствует таким же значениям f, которые упомянуты в ранее опубликованных нашими работами по определению теплот сгорания органических кислот. Что касается коэффициента i в полученных уравнениях, то необходимо отметить, что ситуация не такая однозначная, как с коэффициентом f. Значения этого коэффициента различны в уравнениях для испарения, сгорания, образования, так же, как и в уравнениях энтропии и теплоемкости. На базе литературных экспериментальных данных рассчитано 29 новых уравнений, которые могут быть использованы для вычисления тех же термодинамических функций других, новых органических кислот, и особенно биоорганических веществ с полезными свойствами. Необходимо добавить, что полученные уравнения могут служить дополнительным материалом для расчета энергий связей жирных кислот и их производных в газовой фазе.

Ключевые слова: кислота, жирные кислоты, ацетат, эфир, двойные кислоты, тройные и четверные кислоты

THERMODYNAMIC PROPERTIES OF ORGANIC ACIDS AND SOME THEIR DERIVATIVES

V.V. Ovchinnikov, A.A. Kulakov, I.G. Grigor’eva, S.A. Maltseva

Vitaly V. Ovchinnikov*, Alexey A. Kulakov, Irina G. Grigor’eva, Svetlana A. Maltseva
Department of General Chemistry and Ecology, Kazan National Research Technical University named after
A.N. Tupolev-KAI, K.Marx st., 10, Kazan, 420111, Russia
E-mail: chem_vvo@mail.ru*, alekulakov@yandex.ru, grig406@mail.ru, smaltseva16@yandex.ru

The heats of vaporization, combustion, formation, entropy and the heat capacities in different phases of different carbonic acids and their derivatives: acetates, esters with fatty radicals, two-, three- and four-basic acids (52 compounds) were analysed in the framework of one-parametric mathematical equations. The experimental data of all chosen one-, two-, three- and four-basic acids were analyzed. It was determined, that all thermodynamic functions of these types of compounds depend on the number of valence electrons N, from which the sum of lone electron pairs g as represented in the equations $\Delta_{\text{vap,c,f}}H^\circ = i \pm f (N-g)$ and $S^\circ(C_p) = i \pm f (N-g)$ is excluded. The coefficients f in the first equations is in the range of 104-113 kJ mol$^{-1}$ electron$^{-1}$, that corresponds
Key words: acid, fatty acids, acetate, ester, two-, three- and four-basic acids

INTRODUCTION

It is known during a long time that organic acids are a very important and used class of the carbon derivatives in industry, agriculture and pharmaceutical industries and medical products [1]. In this connection it is possible to recollect such names of medical preparations as acetylsalicylic, gluconic, galactonic, valproic and lactic acids and their metallic derivatives [2, 3]. This class of compounds is a subject of an intensive research of the scientists in the different fields: the study of synthesis, stereoelectronic effects, mechanisms of reaction, thermodynamics and others directions in our time also. Many books and reference books have been written on this topic [4, 5].

However, not only thermochemical properties of linear carbonic, fat acids of different structure are important for the medical, technical needs and theoretical studies. Different acetates, esters and polyfunctional acids represent a large significance also. On this reason the analysis and mathematical treatment of all thermodynamic functions of these classes of derivatives of carbon acids are summed and considered in this review.

It is known, that all mentioned above classes and types of compounds exist in condensed and gaseous phases. Taking this circumstance into account, we believed that consideration of their thermochemical properties, which are represented in Table, should begin first of all from the analysis of the heat of vaporization (ΔvapH), because this function can connect the both phases.

This parameter can be obtained at the use of Clausius-Clapeyon experimental approach and the half-empirical theoretical calculations with the use of Trouton and Wadsö equations for the liquids, which have the hydrogen bonds or include the boiling points [6-9]. There is a special method, based on the calculation of topological solvation index of the first order (\(\gamma^1\)) of investigated molecules [10].

The analysis of other thermodynamic functions of different organic compounds can be made by any ways also. In our previous works [10-15] it has been shown that all thermodynamic functions Δvap.c.P = \(\Psi\) (\(\Psi\) is the heat (ΔH) of vaporization, combustion, formation and entropy (S) and heat capacity (Cp)) of investigated organic molecules) are connected with a parameter (N-g) in the range of one-factor correlation analysis, where N is a general number of valence electrons, g is a number of lone electron pairs of heteroatoms in molecules in general equation 1.1:

\[
\Delta_{\text{vap.c.P}} = i \pm f (N-g)
\]

(1.1)

The parameter g is equal 2 for trivalence nitrogen and phosphorus atoms and similar elements of the group, g is 4 for oxygen, sulfur etc., g is zero for five valence nitrogen and phosphorus etc., g is 6 for halogens [10-12, 14, 15]. The parameters i and f are stoichiometric coefficients. This equation a little differs from the equation (1.2), suggested earlier and mentioned in some papers on the heats of combustion process of organic compounds [10-16].

\[
\Delta cH = -109.0 \cdot (4a + b - c) + \Sigma (hc_i) \cdot d_i
\]

(1.2)

In last equation the number -109.0 (kJ mol\(^{-1}\)) electron\(^{1}\)) has been deduced from the heat of combustion of n-octane. The parameters a and b are the numbers of all four valence carbon and mono valence hydrogen atoms correspondingly, c is a number of the moving electrons from carbon to electronegative heteroatoms. The sum of \(\Sigma (hc_i) \cdot d_i\) represents the number of the heat corrections in the heat of combustion of the organic substance for identical structural groups in molecule [11, 12, 16].
In the next parts of review we consequently will represent thermodynamic data of different acids and acetates. In the aims of the convenience of the perception of thermodynamic material all compounds have a general numeration. Necessary to add, that practically all earlier obtained experimental data, including also the data received in the period from 2000 to 2017, for the review were taken from recognized handbooks on organic chemistry of Pedley, Neylor, Kirby [2], Karapetyanz M.X., Karapetyanz M.L. [4], Cox and Pilcher [6] and National International Standard and Technology Institute (NIST) of United States of America [7].

RESULTS AND DISCUSSION

1. Acids

1.1. Acids with linear \(C_1-C_{12} \) radicals

The analysis of the heat of vaporization \((\Delta v a p H^o) \) of acids \((1-9, \) Table [2, 4, 6, 7]) with the number of carbon atoms from 1 to 12 in the frame of one-factor correlation treatment shows a good dependence \((2.1), \) in which (here and in other correlation equations) \(r \) is a correlation coefficient, \(S_0 \) is a standard deviation and \(n \) is the number of data used for calculation)

\[
\Delta v a p H^o = (35.0 \pm 7.1) + (1.2 \pm 0.2) (N-g)
\]
\[r = 0.913, \ S_0 = 9.2, \ n = 9 \text{ (compounds 1-9)}\]

The similar equations \((2.2-7) \) were found for other thermodynamic functions: the heats of combustion and formation, entropy and the heat of capacity in condensed and gaseous phases of the same compounds.

\[
\Delta H^o = (-11.6 \pm 7.3) - (108.7 \pm 0.2) (N-g)
\]
\[r = 0.999, \ S_0 = 8.6, \ n = 9 \text{ (compounds 1-9)}\]

\[
\Delta H_{\text{cond}}^o = (-444.0 \pm 6.1) - (4.5 \pm 0.2) (N-g)
\]
\[r = 0.995, \ S_0 = 8.0, \ n = 9 \text{ (compounds 1-9)}\]

\[
\Delta H_{\text{gas}}^o = (-399.0 \pm 6.6) - (3.7 \pm 0.1) (N-g)
\]
\[r = 0.992, \ S_0 = 8.0, \ n = 9 \text{ (compounds 1-9)}\]

\[
S^o_{\text{cond}} = (114.2 \pm 1.3) + (5.5 \pm 0.05) (N-g)
\]
\[r = 0.999, \ S_0 = 1.3, \ n = 5 \text{ (compounds 1-4, 6)}\]

\[
S^o_{\text{gas}} = (208.9 \pm 41.2) + (8.3 \pm 2.1) (N-g)
\]
\[r = 0.969, \ S_0 = 27.4, \ n = 3 \text{ (compounds 1, 3, 4)}\]

\[
Cp_{\text{cond}} = (44.4 \pm 41.2) + (6.5 \pm 0.7) (N-g)
\]
\[r = 0.958, \ S_0 = 34.3, \ n = 9 \text{ (compounds 1-9)}\]

Necessary to note that the parameter \(f \) in equations \((2.2) \) has practically the same value, which was received earlier in our works \([10-16] \) \(f = 109.0 \text{ kJ mol}^{-1} \text{ electrons}^{-1} \) for the combustion of different organic compounds.

As to \(i \) and \(f \) coefficients in other equations \((2.3-7) \), their values are essentially differ each from other in every case.

1.2. Fatty acids

Fatty acids are an interesting and important type of acids because they make up a main chain of the structure of lipids. Such acids have usually an even number of carbon atoms and form an unbranched chain. Many fatty acids have one or several double bonds; they are titled as unsaturated fatty acids. Such type of acids plays an important role in biochemistry of the living organisms and in industry also.

The analysis of thermodynamic functions of dodecanoic \((10) \), miristic \((11) \), margaric \((13) \), stearic \((14) \) and arachidic acids \((15) \) \([2, 6, 7, 18-20] \) (Table) gave the similar equations \((2.8-2.11) \),

\[
\Delta v a p H^o = (27.1 \pm 17.9) + (1.4 \pm 0.2) (N-g)
\]
\[r = 0.974, \ S_0 = 7.3, \ n = 6 \text{ (compounds 10-15)}\]

\[
\Delta H^o = (5.7 \pm 80.5) - (108.7 \pm 0.8) (N-g)
\]
\[r = 0.999, \ S_0 = 32.0, \ n = 6 \text{ (compounds 10-15)}\]

\[
\Delta H_{\text{cond}}^o = (-433.5 \pm 50.1) - (4.9 \pm 0.5) (N-g)
\]
\[r = 0.977, \ S_0 = 20.4, \ n = 6 \text{ (compounds 10-15)}\]

\[
Cp_{\text{cond}} = (201.7 \pm 17.7) + (2.9 \pm 0.2) (N-g)
\]
\[r = 0.992, \ S_0 = 7.2, \ n = 6 \text{ (compounds 10-15)}\]

As can be seen, the correlation parameters \(i \) and \(f \) of similar equations for acids with \(C_1-C_{12} \) carbons and fatty acids, having from 12 to 20 carbon atoms in their own structures are practically equal, but have a different errors for \(i \) and \(f \) coefficients.

1.3. Acids with branched carbon radicals

There are a large number of saturated acids, the organic radicals of which have a different space form. However it will be difficult to compare thermodynamic functions of acids, which have a cyclic, iso- and tertiary radicals at carboxyl group. Taking into account this situation, we chose a little number of acids with not long and branched radical. It is the acids \((16-20) \) in Table and on the base of their thermodynamic properties \([2, 6, 7] \) the equations \((2.12-2.15) \) were calculated.

\[
\Delta v a p H^o = (27.9 \pm 1.4) + (1.1 \pm 0.04) (N-g)
\]
\[r = 0.999, \ S_0 = 0.8, \ n = 3 \text{ (compounds 16, 17, 19)}\]

\[
\Delta H^o = (-6.2 \pm 12.5) - (108.9 \pm 0.4) (N-g)
\]
\[r = 0.999, \ S_0 = 5.5, \ n = 3 \text{ (compounds 17-19)}\]

\[
\Delta H_{\text{cond}}^o = (-446.7 \pm 11.3) - (4.2 \pm 0.3) (N-g)
\]
\[r = 0.997, \ S_0 = 5.0, \ n = 3 \text{ (compounds 17-19)}\]

\[
\Delta H_{\text{gas}}^o = (-411.0 \pm 11.3) - (3.4 \pm 0.3) (N-g)
\]
\[r = 0.995, \ S_0 = 5.0, \ n = 3 \text{ (compounds 17-19)}\]

No wonder, what the correlations coefficients in all three groups of mentioned acids have practically comparable values, because their room structures are not especially differ each to other.

1.4. Two-, three- and four-basic acids

These types of organic acids have a large importance for different domains of industry, pharmacology and others \([8, 9] \). Thermodynamic data of two-basic acids \((21-27) \) together with such acids as citric, glycolic and others \((28-33) \) (Table) form the following equations \((2.16-2.20) \), which similar to given higher.

\[
\Delta v a p H^o = (104.9 \pm 3.1) + (1.1 \pm 0.1) (N-g)
\]
\[r = 0.992, \ S_0 = 7.2, \ n = 6 \text{ (compounds 10-15)}\]

\[
\Delta H^o = (44.4 \pm 41.2) + (6.5 \pm 0.7) (N-g)
\]
\[r = 0.958, \ S_0 = 34.3, \ n = 9 \text{ (compounds 1-9)}\]
Necessary to note, that the parameters of equations (2.16-2.18), which are related to two-basic acids, not bad correspond to parameters of equations for normal, fatty and branched acids. However the same parameters in equations (2.19) and (2.20) for the heats of combustion and formation of three- and four-basic acids very differ from others. Probably this effect is possible to explain by strong inner hydrogen connection between carboxylic groups of such type of acids.

2. Acetates and esters of fatty acids

The analysis thermodynamic properties of the large class of esters is useful for beginning with various functions of acetates, which have an important significance in theory of organic compounds and in different branches of industry [1-5, 8, 9]. The approach to this aim is the same, which was used in previous parts: the creation of the definite number of equations, which reflect the interrelation of thermodynamic functions with the number of valence electrons of the examined molecules (Table).

The dependences of the heats of vaporization, combustion, formation and heat of capacity of acetates (34-41, Table) and their interrelations with parameter (N\textsubscript{g}), as shown in the previous parts, are reflected in the equations (2.21-2.26).

Choosing the values of parameters of equations (2.27-2.29), we have:

\[\Delta \text{vap} H^o = (22.7 \pm 1.0) + (0.7 \pm 0.03) (N\textsubscript{g}) \]
\[r = 0.995, \quad S = 1.1, \quad n = 8 \text{ (compounds 34-41)} \]

\[\Delta \text{vap} H^o = (24.1 \pm 170.0) - (113.1 \pm 6.1) (N\textsubscript{g}) \]
\[r = 0.997, \quad S = 116.5, \quad n = 4 \text{ (compounds 34,35,37,38)} \]

Thermodynamic data of esters of fatty acids presented in the literature [2, 6, 7] with more examples than acetates (42-52, Table), what gave a possibility to calculate the equations (2.27-2.29).

CONCLUSIONS

Thermodynamic parameters (heat of vaporization, combustion, formation in different phases, entropy and the heat of capacity) of 52 derivatives of carboxylic acids and their derivatives were analyzed for the first time and it was determined that all functions depend on the number of valence electrons \(N \) from which is excluded the sum of lone electron pairs \(g \) as represented in 29equations \(\Delta \text{vap,H}^o = i \pm f \text{N-g) and S(Cp) = i \pm f(N-g). \) Necessary to note, that the stoichiometric coefficient \(f \) in the first equation is in the range 104-113 kJ mol\(^{-1}\) electron\(^{-1}\) in the received dependences, that corresponds to the same values in the works, which are mentioned in introduction. Other coefficient \(i \) differs for each type of compounds and not necessity in the discussion.

<table>
<thead>
<tr>
<th>No</th>
<th>Compound, formula, (N\textsubscript{g})</th>
<th>(\Delta \text{vap H}^o)</th>
<th>(\Delta H^o)</th>
<th>(\Delta H^o)</th>
<th>(\Delta H^o)</th>
<th>(\Delta H^o)</th>
<th>(S^o)</th>
<th>(S^o)</th>
<th>(C_p)</th>
<th>(C_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetic, C\textsubscript{2}H\textsubscript{4}O\textsubscript{2}, 8</td>
<td>51.6 ± 1.5</td>
<td>874.2 ± 0.2</td>
<td>484.5 ± 0.2</td>
<td>433.0 ± 3.0 (^a)</td>
<td>158.0</td>
<td>282.8</td>
<td>123.1</td>
<td>63.0 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>n-Propanoic, C\textsubscript{3}H\textsubscript{6}O\textsubscript{2}, 14</td>
<td>55.0 ± 2.0</td>
<td>1527.3 ± 0.1</td>
<td>510.8 ± 0.1</td>
<td>455.8 ± 2.0</td>
<td>191.0</td>
<td>152.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n-Butanoic, C\textsubscript{4}H\textsubscript{8}O\textsubscript{2}, 20</td>
<td>58.0 ± 4.0</td>
<td>2183.5 ± 0.6</td>
<td>533.9 ± 0.6</td>
<td>475.9 ± 4.0</td>
<td>225.3</td>
<td>353.3</td>
<td>177.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

V.V. Ovchinnikov, A.A. Kulakov, I.G. Grigor'eva, S.A. Maltseva

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>n-Pentanoic acid, C₅H₁₀O₂, 26</td>
<td>57.9</td>
<td>2850.1 (\pm 5.9)</td>
<td>560.2 (\pm 0.7)</td>
<td>491.0 (\pm 20.0^a)</td>
<td>259.8</td>
<td>439.8 (\pm 0.6)</td>
<td>197.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>n-Hexanoic acid, C₆H₁₂O₂, 32</td>
<td>73.2 (\pm 2.0)</td>
<td>3490.4 (\pm 0.5)</td>
<td>585.7 (\pm 0.5)</td>
<td>512.0 (\pm 4.0)</td>
<td></td>
<td>225.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>n-Heptanoic acid, C₇H₁₄O₂, 38</td>
<td>72.0 (\pm 1.5)</td>
<td>4414.0 (\pm 0.6)</td>
<td>611.5 (\pm 0.6)</td>
<td>539.5 (\pm 1.6)</td>
<td>323.3</td>
<td>267.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>n-Octanoic Acid, C₈H₁₆O₂, 44</td>
<td>82.9 (\pm 1.0)</td>
<td>4797.9 (\pm 0.5)</td>
<td>636.9 (\pm 0.5)</td>
<td>556.6 (\pm 1.1)</td>
<td></td>
<td>297.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Nonanoic acid, C₉H₁₈O₂, 50</td>
<td>85.3</td>
<td>5452.2 (\pm 1.0)</td>
<td>661.9 (\pm 1.0)</td>
<td>579.5 (\pm 1.0)</td>
<td></td>
<td>362.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>n-Decanoic, (capric) acid, C₁₀H₂₀O₂, 56</td>
<td>119.0 (\pm 2.0)</td>
<td>6079.3 (\pm 0.9)</td>
<td>714.1 (\pm 3.5)</td>
<td>624.2 (\pm 5.0)</td>
<td></td>
<td>475.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fatty acids

10	Dodecanoic acid, C₁₀H₂₀O₂, 68	127.9	7377.0 \(\pm 0.9\)	775.1		404.3
11	n-Tetradecanoic (miristic) acid, C₁₄H₂₈O₂, 80	139.7 \(\pm 3.8\)	8676.7 \(\pm 1.4\)	834.1 \(\pm 4.2\)		432.0
12	n-Hexadecanoic acid (palmitic) acid, C₁₆H₃₂O₂, 92	154.4 \(\pm 4.2\)	10028.6 \(\pm 1.9\)	848.4 \(\pm 2.2\)		452.3
13	Heptadecanoic acid (margarinic) acid, C₁₇H₃₄O₂, 98	10624.4 \(\pm 1.7\)	924.4			475.7
14	Octadecanoic acid, Stearic acid, C₁₈H₃₆O₂, 104	166.5 \(\pm 4.2\)	11336.8 \(\pm 2.1\)	947.2 \(\pm 2.2\)		435.6
15	Eicosanoic acid (arachidic) acid C₂₀H₄₀O₂, 116	199.6 \(\pm 7.5\)	12574.2 \(\pm 1.5\)	1012.6 \(\pm 5.1\)		545.1

Branched acids

16	n-Butyric acid, C₄H₈O₂, 20	50.9						173.0
17	n-Methylbutanoic acid, C₅H₁₀O₂, 26	55.8	2835.1 \(\pm 5.9\)	561.6 \(\pm 5.9\)	502.5 \(\pm 6.6\)		197.1	
18	2-Methylbutanoic acid, C₅H₁₀O₂, 26	2842.2 \(\pm 5.9\)	554.5 \(\pm 5.9\)	495.4 \(\pm 6.6\)				
19	2-Ethylhexanoic acid, C₁₃H₂₄O₂, 44	76.3 \(\pm 0.9\)	4799.6 \(\pm 1.7\)	635.1 \(\pm 2.0\)	559.5 \(\pm 2.1\)			
20	Heptanoic acid, 2-ethyl-, C₈H₁₆O₂, 50	63.4						

Two-, three- and four-basic acids

<p>| 21 | Propanedioic acid, C₃H₆O₄, 8 | 111.4 (\pm 0.7) | 861.1 (\pm 0.6) | 891.1 (\pm 0.4) | 149.0 | 127.6 |
| 22 | Butanedioic acid, C₄H₈O₄, 14 | 120.3 (\pm 4.4) | 1491.0 (\pm 3.0^a) | 940.0 (\pm 2.0^a) | 167.3 | 152.9 |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Pentanedioic acid, C₅H₈O₄, 20</td>
<td>119.8</td>
<td>± 1.2</td>
<td>2150.3</td>
<td>± 0.7</td>
<td>960.5</td>
<td>± 1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Hexanedioic acid, C₆H₁₀O₄, 26</td>
<td>133.6</td>
<td>± 1.3</td>
<td>2792.0</td>
<td>± 0.4</td>
<td>998.2</td>
<td>± 0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Heptanedioic acid, C₇H₁₂O₄, 32</td>
<td>139.9</td>
<td>± 1.0</td>
<td>3460.2</td>
<td>± 1.0</td>
<td>1009.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Octanedioic acid, C₈H₁₄O₄, 38</td>
<td>147.8</td>
<td>± 3.8</td>
<td>4110.9</td>
<td>± 1.3</td>
<td>1038.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Tartronic acid, C₃H₄O₅, 6</td>
<td>116.4</td>
<td>± 0.3</td>
<td>1159.3</td>
<td></td>
<td>1068.4</td>
<td>± 1.5</td>
<td>952.0</td>
<td>± 1.5</td>
<td>184.5</td>
</tr>
<tr>
<td>28</td>
<td>Citric Acid, C₆H₈O₇, 18</td>
<td>1960.6</td>
<td>± 4.6</td>
<td>1543.8</td>
<td>± 4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>(Z)-1-propene-1,2,3-ricarboxylic acid, C₆H₆O₆, 18</td>
<td></td>
<td></td>
<td>2001.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(E)-1-propene-1,2,3-ricarboxylic acid, C₆H₆O₆, 18</td>
<td>1985.8</td>
<td>± 2.5</td>
<td>1233.0</td>
<td>± 3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Mesotartaric acid, C₅H₆O₆, 6</td>
<td></td>
<td></td>
<td>1172.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Ethylenediamine tetraacetic acid, C₆H₁₀N₂O₈, 42</td>
<td></td>
<td></td>
<td>4458.1</td>
<td>± 3.6</td>
<td>1761.7</td>
<td>± 3.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Ethylenediamine-N,N'-disuccinic acid, C₆H₁₀N₂O₈, 42</td>
<td></td>
<td></td>
<td>4271.6</td>
<td>± 3.9</td>
<td>1950.2</td>
<td>± 3.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acetates

34	Methyl acetate, C₃H₆O₂, 14	33.4		1592.2	± 0.7	445.8								
35	Ethyl Acetate, C₄H₈O₂, 20	36.7		2238.5	± 0.5	480.6	± 0.8							
36	Propyl acetate, C₅H₁₀O₂, 26	38.6	± 0.1			445.4	± 0.8	259.4	± 0.8	362.7	± 0.8	169.6	± 1.1	113.6
37	Butyl acetate, C₆H₁₂O₂, 32	43.0	± 0.1	3467.0		609.6	± 0.8	566.0	± 0.8	228.4				
38	Pentyl acetate, C₅H₁₄O₂, 38	48.6	± 0.4	4372.1		383.2								
39	Hexyl acetate, C₆H₁₆O₂	51.9	± 0.3	57.1	± 0.2	60.7	± 0.4							
40	Heptyl acetate, C₇H₁₈O₂, 50	57.1	± 0.2	60.7	± 0.4									
41	Octyl acetate, C₈H₂₀O₂, 56													

Esters with fatty radicals

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Methyl dodecanoate, C_{13}H_{26}O_2, 74</td>
<td>70.7</td>
<td>70.7 [^{[19]}] ± 0.2 & 8117.0 & 8117.0 ± 0.4 & 714.6 & 714.6 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Methyl hexadecanoate, C_{17}H_{34}O_2, 98</td>
<td>96.8 [^{[19]}] ± 0.6 & 10669.0 & 10669.0 ± 0.4 & 879.5 & 879.5 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Methyl palmitoleate, C_{17}H_{32}O_2, 96</td>
<td>96.4 [^{[20]}] ± 0.7 & 10547.9 & 10547.9 ± 1.5 & 715.1 & 715.1 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Methyl octadecanoate, C_{19}H_{38}O_2, 110</td>
<td>105.9 [^{[19]}] ± 1.4 & 11962.0 & 11962.0 ± 0.4 & 945.6 & 945.6 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Methyl elaidate, C_{19}H_{36}O_2, 108</td>
<td>77.2 & 11885.0 & 11885.0 ± 12.0 & 731.7 & 731.7 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Methyl linoleate, C_{19}H_{34}O_2, 106</td>
<td>11690.1 & 11690.1 ± 1.5 & 645.7 & 645.7 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Methyl linolenate, C_{19}H_{32}O_2, 104</td>
<td>110.5 [^{[20]}] ± 0.5 & 11506.0 & 11506.0 ± 1.5 & 544.0 & 544.0 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Methyl oleate, C_{19}H_{30}O_2, 108</td>
<td>104.0 & 11832.4 & 11832.4 ± 1.5 & 727.6 & 727.6 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Methyl eicosanoate, C_{20}H_{40}O_2, 122</td>
<td>116.4 & 13263.0 & 13263.0 ± 1.5 & 1003.0 & 1003.0 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Methyl ester of cis-11-eicosenoic acid, C_{21}H_{40}O_2, 120</td>
<td>115.8 [^{[20]}] ± 0.7 & 13190.0 & 13190.0 & 791.0 & 791.0 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Butyl ester of oleic acid, C_{22}H_{44}O_2, 126</td>
<td>97.7 [^{[20]}] ± 14.0 & 13843.0 & 13843.0 ± 14.0 & 816.9 & 816.9 &</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: a) average from 6-8 values

Примечание: а) среднее из 6-8 значений

REFERENCES

