УДК: 544.032

ТЕРМИЧЕСКИЕ ПРЕВРАЩЕНИЯ В СИСТЕМАХ Ga-MoO₃

Л.Н. Бугерко, С.В. Бин, Э.П. Суровой, В.Э. Суровая

Лидия Николаевна Бугерко, Сергей Викторович Бин, Эдуард Павлович Суровой

Кафедра аналитической и неорганической химии, Кемеровский государственный университет, ул. Красная, 6, Кемерово, Российская Федерация, 650023

E-mail: lbugerko@mail.ru, peen@ngs.ru, epsur@kemsu.ru

Виктория Эдуардовна Суровая *

Кафедра химии, технологии неорганических веществ и наноматериалов, Кузбасский государственный технический университет им. Т.Ф. Горбачева, ул. Весенняя, 28, Кемерово, Российская Федерация, 650000 E-mail: sur.vik@mail.ru*

Методами оптической спектроскопии, микроскопии, гравиметрии исследованы превращения в наноразмерных системах Ga-MoO₃ в зависимости от толщины пленок Ga (d = 2-96 нм) и Мо O_3 (d = 7-62 нм), температуры (473 - 773 К) и времени термообработки. Показано, что спектры поглощения систем Ga-MoO3 в коротковолновой области спектра ($\lambda = 300-500$ нм) по мере уменьшения толщины пленок галлия определяются поглощением пленок МоО₃, а в длинноволновой области спектра ($\lambda = 500-1100$ нм) проявляются полосы поглощения пленок галлия. Рассчитаны, построены и сопоставлены кинетические зависимости степени превращения пленок МоО3 и галлия. Установлено, что увеличение толщины пленок МоО3 в системах Ga-MoO3 при постоянной температуре обработки приводит к уменьшению степени превращения центра [e·(V_a)^(++)·e] пленок MoO₃, в то время как увеличение температуры при постоянной толщине пленок МоО3 способствует ее возрастанию. Показано, что скорость превращения центра [e·(V_a)^(++)·e] пленок MoO₃ в системах Ga-MoO3 больше, чем в индивидуальных пленках MoO3. Измерена контактная разность потенциалов для пленок Ga, MoO₃ и фото-ЭДС системы Ga-MoO₃, которая соответствует положительному знаку со стороны слоя МоО3. Построена диаграмма энергетических зон систем Ga-MoO₃. Предложена модель термического превращения пленок MoO₃ в системах Ga-МоОз, включающая перераспределение на контакте равновесных носителей заряда, формирование в процессе приготовления пленки MoO_3 центра [(V a)^(++)·e], преобразование его при создании систем Ga-MoO3 в центр [e·(V_a)^(++)·e], термический переход электрона на уровень центра $[(V a)^{(++)} \cdot e]$ с образованием центра $[e \cdot (V a)^{(++)} \cdot e]$.

Ключевые слова: наноразмерные пленки, галлий, оксид молибдена, системы галлий – оксид молибдена, термические превращения, энергетические зоны

THERMAL TRANSFORMATIONS OF Ga-MoO₃ SYSTEM

L.N. Bugerko, S.V. Bin, E.P. Surovoi, V.E. Surovaya

Lydiya N. Bugerko, Sergey V. Bin, Eduard P. Surovoi

Department of Analytical and Inorganic Chemistry, Kemerovo State University, Krasnaya st., 6, Kemerovo, 650023, Russia.

E-mail: lbugerko@mail.ru, peen@ngs.ru, epsur@kemsu.ru

Victoriya E. Surovaya*

Department of Chemistry, Technology of Inorganic Substances and Nanomaterials, T.F. Gorbachev Kuzbass State Technical University, Vesennyaya st., 28, Kemerovo, 650000, Russia E-mail: sur.vik@mail.ru*

Transformations in nanoscale $Ga-MoO_3$ systems are studied with methods of optical spectroscopy, microscopy, gravimetry, depending on the thickness of Ga (d = 2-96 nm) and MoO₃ (d = 7-62 nm) films, the temperature (473–773 K) and the heat treatment time. It was shown that the absorption spectra of the Ga-MoO₃ systems in the short-wavelength region of the spectrum ($\lambda = 300-500$ nm) as the thickness of gallium films decreases are determined by the absorption of MoO_3 films, and in the long-wavelength region of the spectrum ($\lambda = 500-1100$ nm), the absorption bands of gallium films appear. The kinetic dependences of the degree of conversion of MoO_3 and gallium films have been calculated, constructed and compared. It has been established that an increase in the thickness of MoO_3 films in Ga-MoO₃ systems at a constant processing temperature leads to a decrease in the degree of transformation of the center of $[e \cdot (V_a)^{(++)} \cdot e] MoO_3$ films, while an increase in temperature at a constant thickness of MoO_3 films contributes to its increase. It is shown that the rate of transformation of the center of $[e(V \ a)^{(++)}\cdot e] MoO_3$ films in Ga–MoO₃ systems is higher than in individual MoO_3 films. The contact potential difference for Ga, MoO_3 , and photo-emf of $Ga-MoO_3$ is measured, which corresponds to a positive sign from the MoO_3 layer. A diagram of the energy bands of $Ga-MoO_3$ systems is constructed. A model is proposed for the thermal transformation of MoO_3 films in Ga– MoO_3 systems, including the redistribution of equilibrium charge carriers on the contact, the formation of the center $[(V_a)^{(++)}\cdot e]$ during the preparation of the MoO_3 film, its transformation in the creation of $Ga-MoO_3$ systems at the center $[e(V \ a)^{(++)}e]$, the thermal transition of the electron to the level of the center $[(V_a)^{(++)})$ with the formation of the center $[e \cdot (V \ a)^{(++)} \cdot e]$.

Key words: nanosized films, gallium, molybdenum oxide, gallium-molybdenum systems, thermal transformations, energy bands

Для цитирования:

Бугерко Л.Н., Бин С.В., Суровой Э.П., Суровая В.Э. Термические превращения в системах Ga-MoO₃. *Изв. вузов. Химия и хим. технология*. 2019. Т. 62. Вып. 5. С. 45–49

For citation:

Bugerko L.N., Bin S.V., Surovoi E.P., Surovaya V.E. Thermal transformations of Ga-MoO₃ system. Izv. *Vyssh. Uchebn. Zaved. Khim. Tekhnol.* 2019. V. 62. N 5. P. 45–49

ВВЕДЕНИЕ

Пленочные покрытия широко применяются в качестве конструкционных элементов и функциональных слоев в современных электронных устройствах, деталях авиационной и космической техники, в качестве твердых износостойких покрытий [1]. Изучение закономерностей процессов, протекающих в двухслойных наноразмерных системах «металл – полупроводник (диэлектрик)» под действием энергетических факторов, представляет интерес в связи с разрабатываемой возможностью создания на их основе новых систем функционального назначения [2-17].

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы для исследований готовили методом термического испарения в вакууме (2·10⁻³ Па) путем нанесения тонких слоев Ga (2-96 нм) и MoO₃ (7-62 нм) на подложки из стекла, используя вакуумный универсальный пост «ВУП-5М». Двухслойные системы Ga-MoO₃ готовили путем последовательного нанесения слоев MoO₃ на слой Ga. Подложками служили, предварительно очищенные стекла от фотопластинок (ГОСТ 9284-59) [5-7]. Образцы подвергали термической обработке в муфельной печи «МИМП-3П» в интервале температур 473-773 К. Регистрацию эффектов до и после обработки осуществляли гравиметрическим, микроскопическим и спектрофотометрическим (в диапазоне длин волн 190-1100 нм, используя спектрофотометр «Shimadzu UV-1700») методами. Измерения фотоЭДС (U_{ϕ}) проводили в вакууме [17]. Контактную разность потенциалов (КРП) между пленками галлия, оксида молибдена (VI) и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [18].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

При исследовании оптических свойств наноразмерных пленок MoO₃, Ga и двухслойных систем Ga-MoO₃ было установлено, что по мере увеличения толщины пленок галлия наблюдается увеличение оптической плотности систем Ga-MoO₃ в диапазоне $\lambda = 300-1100$ нм. При увеличении толщины пленок MoO₃ оптическая плотность систем Ga-MoO₃ также возрастает, однако при этом в большей степени проявляется полоса поглощения в коротковолновой области спектра ($\lambda = 300-500$ нм).

Для выяснения возможного взаимодействия между пленками Ga и MoO₃ в процессе приготовления систем Ga-MoO₃ были сопоставлены экспериментальные спектры поглощения с рассчитанными, полученными суммированием при каждой длине волны значений оптической плотности индивидуальных пленок MoO₃ и Ga аналогичной толщины. Рассчитанные и экспериментальные спектры поглощения всех систем не совпадают.

На рис. 1 приведены спектры поглощения системы Ga - MoO_3 в процессе термической обработки при T = 573 K.

Рис. 1. Спектры поглощения системы Ga-MoO₃ толщиной d(Ga) = 2 нм, d(MoO₃) = 44 нм до (1) и после теплового воздействия при T = 573 K: 2 - 2; 3 - 6; 4 - 15; 5 - 30; 6 - 60; 7 - 110; 8 - 350; 9 - 470; 10 - 650; 11 - 830; 12 - 1010; 13 - 1500; 14 - 3100; 15 - 4600 мин

Fig. 1. The absorption spectra of a Ga – MoO₃ system with a thickness of d (Ga) = 2 nm, d (MoO₃) = 44 nm before (1) and after thermal exposure at T = 573 K: 2 - 2; 3 - 6; 4 - 15; 5 - 30; 6 - 60; 7 - 110; 8 - 350; 9 - 470; 10 - 650; 11 - 830; 12 - 1010; 13 - 1500; 14 - 3100; 15 - 4600 min

В процессе термической обработки оптическая плотность пленок MoO₃ (d = 7-62 нм) в коротковолновой области спектра (λ = 300-500 нм с максимумом λ = 350 нм) уменьшается и, как следствие, наблюдается смещение края полосы собственного поглощения в коротковолновую область спектра, а в длинноволновой области спектра (λ = 500-1100 нм с максимумом λ = 870 нм) возрастает [17]. При термической обработке пленок Ga (d = 2-96 нм) наблюдается уменьшение значений оптической плотности образца в интервале λ = 190-1100 нм и формирование спектра поглощения нового вещества – оксида галлия (III) [16]. По мере увеличения температуры и толщины пленок оксида молибдена (VI) и галлия при термообработке систем Ga-MoO₃ в диапазоне T = 473-773 К наблюдается увеличение эффектов изменения оптической плотности и уменьшение времени достижения их предельных значений.

Были рассчитаны и построены кинетические зависимости степени превращения пленок MoO₃ и галлия в системах Ga-MoO₃. Выражение для расчета степени термического превращения центра $T_1 - [(V_a)^{++} \cdot e]$ в центр $T_2 - [e \cdot (V_a)^{++} \cdot e]$ пленок MoO₃:

$$\alpha = \left(A_{\rm obp} - A_{T1}^{\rm 1}\right) / \left(A_{T2}^{\rm 1} - A_{T1}^{\rm 1}\right)$$

где A_{T2}^1 , A_{T1}^1 – предельные оптические плотности при максимальной и минимальной концентрации центров Т₂ при $\lambda = 870$ нм; A_{obp} – значение оптической плотности образца.

Установлено, что при увеличении толщины пленок MoO_3 в системах Ga-MoO₃ при постоянной температуре термообработки степень превращения во всем исследованном интервале температур уменьшается. Показано, что скорость превращения центра T_2 пленок MoO_3 в системах Ga-MoO₃ больше, чем в индивидуальных пленках MoO_3 (рис. 2).

Рис. 2. Зависимость степени превращения центра T_2 пленки MoO₃ в системах Ga–MoO₃ (2, 4, 6) и в пленках MoO₃ (1, 3, 5) (d(Ga) = 6 нм, d(MoO₃) = 42 нм) при разных температурах: 1, 2 - 473 K, 3, 4 - 573 K, 5, 6 - 673 K, 7, 8 - 773 K

Fig. 2. Dependence of the degree of transformation of the center of the T₂ MoO₃ film in the Ga-MoO₃ (2, 4, 6) and MoO₃ films (1, 3, 5) (d(Ga) = 6 nm, d(MoO₃) = 42 nm) at different temperatures: 1, 2 - 473 K, 3, 4 - 573 K, 5, 6 - 673 K, 7, 8 - 773 K

Для выяснения причин, вызывающих наблюдаемые изменения металлом оптических свойств MoO_3 в разных спектральных областях были измерены величина и знак U_{ϕ} для систем Ga-MoO₃, КРП между MoO_3 , Ga и электродом сравнения из платины в условиях атмосферы ($P = 1 \cdot 10^5 \Pi a$) и высокого вакуума ($P = 1 \cdot 10^{-5}$ Па). Наблюдаемое отличие в значениях работ выхода Ga и MoO₃ (+1,20 и +0,71 соответственно) свидетельствует о возможности при формировании плотного контакта и установлении в системе Ga-MoO₃ состояния термодинамического равновесия результирующего потока электронов из галлия в оксид молибдена (VI). В результате измерений U_ф для систем Ga-MoO₃ в диапазоне $\lambda =$ 300-1100 нм было установлено, что в процессе облучения светом формируется U_ф положительного знака со стороны слоя МоО3. Из анализа результатов измерений U_ф и КРП было установлено, что при создании контакта оксида молибдена (VI) с пленкой галлия в результате электронных переходов со стороны МоО3 образуется обогащенный электронами антизапорный слой. Диаграмма энергетических зон систем Ga-MoO₃ представлена на рис. 3.

Рис. 3. Диаграмма энергетических зон системы Ga–MoO₃: Ev – уровень потолка валентной зоны, E_C – уровень дна зоны проводимости, E_F –уровень Ферми, E₀ – уровень вакуума, T₁, T₂, – уровни центров захвата, T_Π⁺ – уровни поверхностных электронных состояний, R⁺ – центр рекомбинации Fig. 3. The diagram of the energy bands of the Ga–MoO₃ system: Ev – is the level of the top of the valence band, E_C – is the level of

the bottom of the conduction band, E_F – is the Fermi level, E_0 – is the vacuum level, T_1 , T_2 , – the levels of the trapping centers, T_{P^+} – are the levels of surface electronic states, R^+ – center of recombination

Известно, что полоса поглощения в диапазоне $\lambda = 300-400$ нм с максимумом при $\lambda = 350$ нм (центр T₁) для монокристаллов MoO₃ связана со стехиометрическим недостатком кислорода и обусловлена вакансиями кислорода с одним захваченным электроном $[(V_a)^{++} \cdot e]$ (аналог *F*-центра. Глубина залегания $[(V_a)^{++} \cdot e]$ -центра составляет $E_T^1 = 3,54$ эВ. В процессе установления термодинамического равновесия из-за несоответствия работ выхода MoO₃ и Ga электроны из галлия переходят в оксид молибдена (VI) на уровни $[(V_a)^{++} \cdot e]$ -центров с формированием $[e \cdot (V_a)^{++} \cdot e]$ -центра, где $(V_a)^{++}$ – анионная вакансия. Преобразование $[(V_a)^{++} \cdot e]$ -центра можно осуществить путем перевода электрона с уровня залегания центра на дно зоны проводимости: $[(V_a)^{++} \cdot e] \rightarrow e + (V_a)^{++}$, либо путем перевода электрона с потолка валентной зоны на уровень центра $[(V_a)^{++} \cdot e]$ с образованием дырок (*p*).

Методами электронной микроскопии и рентгеновской дифракции продуктов последовательного восстановления оксида молибдена (VI) МоО3-у установлено, что область нестехиометрии, в которой сохраняется неизменная структура МоО₃, очень мала и соответствует значению $\gamma < 0,001$ [13, 17]. Если оценить концентрацию $[(V_a)^{++} \cdot e]$ -центров $\approx 10^{18}$ см⁻³ (и считать, что все анионные вакансии в МоО3 заняты по одному электрону в каждой), то в идеальном случае (когда все электроны достигнут предназначенного для них места и не примут участия в других процессах) скорости процессов термического возбуждения электрона с уровней $[(V_a)^{++} \cdot e]$ -центра на дно зоны проводимости и термического возбуждения электрона с потолка валентной зоны на уровни $[(V_a)^{++} \cdot e]$ -центра составят $W_1 \approx 1.10^2$ см⁻³·с⁻¹ и $W_2 \approx 5.10^{31}$ см⁻³·с⁻¹ соответственно. В результате за 1 с переходит $\approx 10^2$ электронов - малое количество. Широкая полоса поглощения с максимумом при $\lambda = 870$ нм, связана с формированием $[e \cdot (V_a)^{++} \cdot e]$ -центров. Дырки могут захватываться собственными и примесными дефектами с выделением кислорода и освобождением анионных вакансий. Анионные вакансии будут взаимодействовать с электронами переходящими из галлия с формированием центров T₁ и T₂: e + $(V_a)^{++} \rightarrow e + [(V_a)^{++} \cdot e] \rightarrow [e \cdot (V_a)^{++} \cdot e].$

Увеличение концентрации электронов со стороны MoO₃ в состоянии термодинамического равновесия системы Ga-MoO₃ во-первых обеспечивает превращение части центров T₁ в центры T₂ в пленке MoO₃, и во вторых должно привести к увеличению скорости термостимулированного процесса превращения оставшихся центров $[(V_a)^{++} \cdot e]$ в центры $[e \cdot (V_a)^{++} \cdot e]$.

выводы

Полученные в настоящей работе результаты исследований свидетельствуют о контактной природе эффектов изменения пленками Ga скорости термического превращения пленок MoO₃. При создании систем Ga - MoO₃ происходит преобразование центра $[(V_a)^{++} \cdot e]$ в слоях MoO₃ в центр $[e \cdot (V_a)^{++} \cdot e]$. В результате теплового воздействия систем Ga - MoO₃ электроны переходящие из галлия в слой MoO₃ способствуют более быстрому формированию центров T₁ и T₂.

Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 5

ЛИТЕРАТУРА

- 1. Раков Э.Г. Неорганические наноматериалы. М.: Бином. 2013. 477 с.
- Surovoi E.P., Borisova N.V. Regularities of Photostimulated Conversions in Nanometer Aluminum Layers. J. Phys. Chem. 2009. V. 83. N 13. P. 2302–2307. DOI: 10.1134/S0036024409130202.
- Суровой Э.П., Борисова Н.В. Закономерности формирования наноразмерных систем медь-оксид меди (I). Изв. вузов. Химия и хим. технология. 2009. Т. 52. Вып. 4. С. 54–57.
- 4. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Бин С.В. Кинетические закономерности термических превращений в наноразмерных пленках висмута. *Журн. физ. химии.* 2012. Т. 86. № 4. С. 702–709. DOI: 10.1134/S0036024412040231.
- Борисова Н.В., Бугерко Л.Н., Говорина С.П., Суровой Э.П. Изучение процесса взаимодействия наноразмерных систем медь–оксид меди (I) с аммиаком. Изв. вузов. Химия и хим. технология. 2010. Т. 53. Вып. 1. С. 60–63.
- 6. Суровой Э.П., Еремеева Г.О. Термостимулированные превращения наноразмерных систем In МоО₃. *Неорган. материалы.* 2013. Т. 49. № 4. С 404–409. DOI: 10.1134/S0020168513030205.
- Еремеева Г.О., Суровой Э.П. Термостимулированные превращения в наноразмерных пленках индия. Изв. вузов. Химия и хим. технология. 2012. Т. 55. Вып. 12. С. 63–67.
- 8. Суровой Э.П., Бугерко Л.Н., Суровая В.Э. Кинетика фотостимулированных превращений в наноразмерных пленках висмута. *Журн. физ. химии.* 2013. Т. 87. № 9. С. 1565–1571. DOI: 10.1134/S0036024413090239.
- Суровой Э.П., Сухорукова А.А., Бин С.В. Закономерности формирования наноразмерных систем кобальт-оксид кобальта. *Неорган. материалы.* 2014. Т. 50. № 4. С. 436–441.
- 10. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Бин С.В. Кинетические закономерности термических превращений в наноразмерных пленках никеля. *Журн. физ. химии.* 2014. Т. 88. № 12. С. 1970–1976. DOI: 10.1134/S0036024414120358.
- Суровой Э.П., Бин С.В., Бугерко Л.Н., Суровая В.Э. Кинетические закономерности термических превращений в наноразмерных пленках свинца. *Журн. физ. химии.* 2015. Т. 89. № 1. С. 85–91. DOI: 10.1134/S0036024415010276.
- 12. Суровой Э.П., Бугерко Л.Н., Суровая В.Э., Заиконникова Т.М. Кинетические закономерности формирования наноразмерной системы марганец – оксид марганца. *Журн. физ. химии.* 2016. Т. 90. № 3. С. 411–416. DOI: 10.1134/S0036024416030298.
- Суровой Э.П., Бин С.В. Кинетические закономерности термических превращений в наноразмерных системах Ni – MoO₃. *Журн. физ. химии.* 2017. Т. 91. № 2. С. 361–367. DOI: 10.1134/S0036024417020315.
- 14. **Калыгина В.М., Зарубин А.Н., Найден Е.П.** Анодные пленки Ga₂O₃. Влияние термического отжига на свойства пленок. ФТП. 2012. Т. 46. № 2. С. 278–284.
- 15. Калыгина В.М., Зарубин А.Н., Новиков В.А., Петрова Ю.С. Пленки оксида галлия, полученные методом термического напыления. *ФТП*. 2013. Т. 47. № 5. С. 598–603.
- 16. Суровой Э.П., Сухорукова А.А., Бин С.В. Закономерности формирования наноразмерных систем галлий-оксид галлия. *Неорган. материалы.* 2014. Т. 50. № 12. С. 1287–1292.
- 17. Суровой Э.П., Борисова Н.В. Термические превращения в наноразмерных слоях МоО₃. *Журн. физ. химии*. 2008. Т. 82. № 11. С. 2120–2125.
- Суровая В.Э., Бугерко Л.Н., Суровой Э.П. Определение работы выхода наноразмерных пленок висмута и оксида висмута (III). Изв. вузов. Физика. 2014. Т. 57. № 7/2. С. 173–178.
- Панков Ж. Оптические процессы в полупроводниках. М.: Мир. 1973. 456 с.

REFERENCES

- 1. **Rakov E.G.** Inorganic nanomaterials. M: Binom. 2013. 477 p. (in Russian).
- Surovoi E.P., Borisova N.V. Regularities of Photostimulated Conversions in Nanometer Aluminum Layers. J. Phys. Chem. 2009. V. 83. N 13. P. 2302–2307. DOI: 10.1134/S0036024409130202.
- Surovoi E.P., Borisova N.V. Regularities in the formation of nanoscale copper-copper oxide (I) systems. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2009. V. 52. N 4. P. 54-57 (in Russian).
- Surovoi E.P., Bugerko L.N., Surovaya V.E., Bin S.V. Kinetic regularities of thermal transformations in nanosized bismuth films. *Russ. J. Phys. Chem.* 2012. V. 86. N 4. P. 702–709 (in Russian). DOI: 10.1134/S0036024412040231.
- Borisova N.V., Bugerko L.N., Govorina S.P., Surovoi E.P. Study of the interaction of nanoscale copper-oxide copper (I) systems with ammonia. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2010. V. 53. N 1. P. 60-63 (in Russian).
- Surovoi E.P., Eremeeva G.O. Thermally stimulated transformations of nanosized In-MoO₃ systems. *Neorg.*. *Mater.*. 2013. V. 49. N 4. P. 404-409 (in Russian). DOI: 10.1134/S0020168513030205.
- Eremeeva G.O., Surovoi E.P. Thermally stimulated transformations in nanosized indium films. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2012. V. 55. N 12. P. 63-67 (in Russian).
- Surovoi E.P., Bugerko L.N., Surovaya V.E. Kinetics of photostimulated transformations in nanosized bismuth films. *Zhurn. Fizich. Khim.* 2013. V. 87. N 9. P. 1565-1571 (in Russian). DOI: 10.1134/S0036024413090239.
- Surovoi E.P., Sukhorukova A.A., Bin S.V. Regularities in the formation of nanoscale systems of cobalt-cobalt oxide. *INeorg. Mater.* 2014. V. 50. N 4. P. 436-441 (in Russian).
- Surovoi E.P., Bugerko L.N., Surovaya V.E., Bin S.V. Kinetic regularities of thermal transformations in nanosized nickel films. *Russ. J. Phys. Chem.* 2014. V. 88. N 12. P. 1970-1976 (in Russian). DOI: 10.1134/S0036024414120358.
- Surovoi E.P., Bin S.V. Surovaya V.E., Bugerko L.N. Kinetic regularities of thermal transformations in nanosized lead films. *Zhurn. Fizich. Khim.* 2015. V. 89. N 1. P. 85-91 (in Russian). DOI: 10.1134/S0036024415010276.
- Surovoi E.P., Bugerko L.N., Surovaya V.E., Zaikonnikova T.M. Kinetic regularities in the formation of a nanoscale system of manganese-manganese oxide. *Zhurn. Fizich. Khim.* 2016. V. 90. N 3. P. 411–416 (in Russian). DOI: 10.1134/S0036024416030298.
- Surovoi E.P., Bin S.V. Kinetic regularities of thermal transformations in nanosized Ni - MoO₃ systems. *Zhurn. Fizich. Khim.* 2017. V. 91. N 2. P. 361-367 (in Russian). DOI: 10.1134/S0036024417020315.
- Kalygina V.M., Zarubin A.N., Naiden E.P. Anode films of Ga₂O₃. Influence of thermal annealing on the properties of films. *FTP*. 2012. V. 46. N 2. P. 278-284 (in Russian).
- Kalygina V.M., Zarubin A.N., Novikov V.A., Petrova Yu.S. Gallium oxide films obtained by the thermal deposition method. *FTP*. 2013. V. 47. N 5. P. 598-603 (in Russian).
- Surovoi E.P., Sukhorukova A.A., Bin S.V. Regularities in the formation of nanoscale systems of gallium-gallium oxide. *Neorg. Mater.* 2014. V. 50. N 12. P. 1287-1292 (in Russian).
- Surovoi E.P., Borisova N.V. Thermal transformations in nanosized MoO₃ layers. *Zhurn. Fizich. Khim.* 2008. V. 82. N 11. P. 2120-2125 (in Russian).
- Surovaya V.E., Bugerko L.N, Surovoi E.P. Determination of the work function of nanosized bismuth films and bismuth (III) oxide. *Izv. Vyssh. Uchebn. Zaved. Fizika.* 2014. V. 57. N 7/2. P. 173-178 (in Russian).
- Pankov Zh. Optical processes in semiconductors. M.: Mir. 1973. 456 p. (in Russian).

Поступила в редакцию (Received) 03.05.2018 Принята к опубликованию (Accepted) 22.04.2019