КАТОДНОЕ ВЫДЕЛЕНИЕ ВОДОРОДА НА ДИСИЛИЦИДЕ ЖЕЛЕЗА. П. КИСЛАЯ СРЕДА

М.М. Кузьминых, В.В. Пантелеева, А.Б. Шеин

Мария Михайловна Кузьминых, Виктория Вячеславовна Пантелеева, Анатолий Борисович Шеин* Кафедра физической химии, Пермский государственный национальный исследовательский университет, ул. Букирева, 15, Пермь, Российская Федерация, 614990 E-mail: Anatoly173@yandex.ru, vikpant@mail.ru, ashein@psu.ru*

Исследованы кинетика и механизм реакции выделения водорода на FeSi2-электроде в растворе 0,5 М H₂SO₄. Установлено, что реакция выделения водорода на дисилициде железа в сернокислом электролите протекает по маршруту разряд – электрохимическая десорбция, где десорбция – скорость-определяющая стадия, обе стадии необратимы, коэффициенты переноса стадий равны, одновременно протекает реакция абсорбции водорода в кинетическом режиме (во всем изученном интервале потенциалов), адсорбция атомарного водорода описывается уравнением изотермы Ленгмюра. Отмечается влияние тонкой оксидной пленки, близкой по составу к SiO₂, на кинетику выделения водорода на FeSi₂ при невысоких катодных поляризациях. Изучено влияние различных способов модификации поверхностного слоя FeSi₂-электрода на кинетику и механизм катодного процесса. Обнаружено, что модификация поверхности дисилицида железа наводороживанием в 0,5 $M H_2 SO_4$ при i = 30 мA/см², анодным травлением в 0,5 $M H_2SO_4$ при E = 0,4 B (ст.в.э.), анодным травлением в 1,0 M NaOHпри E = 0,1 В (ст.в.э.), химическим травлением в 5,0 М NaOH при 70 °C снижает перенапряжение выделения водорода; механизм катодного процесса в результате модификации не изменяется. На основе измерений дифференциальной емкости выявлено, что уменьшение перенапряжения выделения водорода на дисилициде железа обусловлено действием двух факторов: развитием поверхности и изменением состава поверхностного слоя электрода. Сделан вывод, что FeSi2 в сернокислом электролите представляет перспективный электродный материал, проявляющий активность в реакции электрохимического выделения водорода.

Ключевые слова: дисилицид железа FeSi₂, катодное выделение водорода, сернокислый электролит, модификация

CATHODIC HYDROGEN EVOLUTION ON IRON DISILICIDE. II. ACIDIC SOLUTION M.M. Kuzminykh, V.V. Panteleeva, A.B. Shein

Maria M. Kuzminykh, Viktoria V. Panteleeva, Anatoliy B. Shein* Department of Physical Chemistry, Perm State University, Bukireva st., 15, Perm, 614990, Russia E-mail: anatoly173@yandex.ru, vikpant@mail.ru, ashein@psu.ru*

> The kinetics of hydrogen evolution reaction on FeSi₂-electrode in 0.5 M H₂SO₄ solution has been studied using methods of polarization and impedance measurements. With the help of diagnostic criteria for the hydrogen evolution reaction mechanisms based on the analysis of the dependence of the parameters of the equivalent electric circuit on overvoltage, it was established that the reaction of hydrogen evolution on iron disilicide in the sulfuric acid solution proceeds along the discharge - electrochemical desorption route, where desorption is the rate-determining stage. Both stages are irreversible, the transfer coefficients a of the stages are equal, simultaneously the hydrogen absorption reaction by the electrode material proceeds in the kinetic mode (in the whole investigated range of potentials). It was found that the adsorption of atomic hydrogen is described by the equation of the Langmuir isotherm. The influence of thin oxide film on the hydrogen evolution kinetics is noted. The influence of various methods of modifying of the surface of FeSi₂-electrode on the kinetics and mechanism of the cathodic process has been studied. It was found that the modification of the disilicide surface by hydrogenation at a current density of i = 30 mA/cm²,

Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 2

an anodic etching in 0.5 M H_2SO_4 at the potential E = 0.4 V relative to the standard hydrogen electrode, an anodic etching in 1.0 M NaOH at the potential E = 0.1 V, chemical etching in 5.0 M NaOH at 70 °C reduce the overvoltage of hydrogen evolution, but the mechanism of the cathodic process does not change as a result of the electrode modification. Reduction of the overvoltage of hydrogen evolution on iron disilicide is due to the action of two factors: the development of the surface and the change in the composition of the surface layer of the electrode. It has been concluded that FeSi₂ in the sulfuric acid solution is a promising electrode material that exhibits activity in the electrolytic hydrogen evolution reaction.

Key words: iron disilicide FeSi₂, cathodic hydrogen evolution, sulfuric acid solution, modifying, impedance

Для цитирования:

Кузьминых М.М., Пантелеева В.В., Шеин А.Б. Катодное выделение водорода на дисилициде железа. II. Кислая среда. *Изв. вузов. Химия и хим. технология.* 2019. Т. 62. Вып. 2. С. 59–64

For citation:

Kuzminykh M.M., Panteleeva V.V., Shein A.B. Cathodic hydrogen evolution on iron disilicide. II. Acidic solution. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2019. V. 62. N 2. P. 59–64

ВВЕДЕНИЕ

Катодная реакция выделения водорода – одна из важнейших электрохимических реакций [1, 2]. В настоящее время значительное внимание уделяется поиску материалов, активных в реакции электролитического выделения водорода, и разработке способов повышения их эффективности при получении водорода [2-7]. Перспективными в этом отношении материалами оказываются металлоподобные соединения, например, силициды [8-10], германиды переходных металлов [8], тройные соединения [11].

Предметом настоящей работы является исследование кинетики и механизма реакции выделения водорода (р.в.в.) на дисилициде железа (FeSi₂) в сернокислом электролите, определение электрохимической активности FeSi₂ в реакции выделения водорода (р.в.в.), установление влияния различных способов модификации поверхностного слоя силицида на скорость р.в.в.

МАТЕРИАЛЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Материалы исследования и методика эксперимента подробно описаны в работе [12]. В данной части работы исследования проводили в растворе 0,5 М H₂SO₄ (х.ч.). Все потенциалы в работе приведены относительно стандартного водородного электрода.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Катодные поляризационные кривые FeSi₂электрода, немодифицированного и подвергнутого различным видам обработки, в растворе $0,5 \text{ M } H_2 \text{SO}_4$ имеют однотипный вид и характеризуются наличием тафелевского участка при *E* от -0,40 до -0,55 В с наклоном, равным ~(0,120-0,144) В. Модификация поверхности FeSi₂ наводороживанием в 0,5 M H₂SO₄ при *i* = 30 мA/см² снижает перенапряжение выделения водорода на ~0,08 В, анодным травлением в 0,5 M H₂SO₄ при *E* = 0,4 В – на ~0,01 В, анодным травлением в 1,0 М NaOH при *E* = 0,1 В – на ~0,09 В, химическим травлением – на ~0,14 В (при *i* = 1 мA/см²).

Рис. 1. Катодные поляризационные кривые FeSi₂-электрода в 0,5 M H₂SO₄: 1 – без обработки; 2 – наводороживание при i = 30 мА/см²; 3 – анодное травление в 0,5 M H₂SO₄; 4 – анодное травление в 1,0 M NaOH; 5 – химическое травление в 5,0 M NaOH при 70 °C

Fig. 1. Cathodic polarization curves for FeSi₂ in 0.5 M H₂SO4: 1 – without treatment; 2 – hydrogenation at i = 30 mA/cm^2 ; 3 – anodic etching in 0.5 M H₂SO4; 4 – anodic etching in 1.0 M NaOH; 5 – chemi-

cal etching in 5.0 M NaOH at 70 °C

Дифференциальная емкость немодифицированного FeSi₂-электрода в растворе 0,5 М H₂SO₄ в исследованной области составляет ~6 мк Φ /см² (при *f* = 10 кГц) и слабо зависит от потенциала (рис. 2).

Низкие значения емкости FeSi₂ могут быть обусловлены наличием на его поверхности диэлектрической пленки SiO₂, которая полностью не восстанавливается при невысоких катодных поляризациях. Согласно [13], диоксид кремния является устойчивым в кислых средах в катодной области. Пониженные значения дифференциальной емкости также могут быть связаны с полупроводниковыми свойствами материала электрода [14, 15]. Однако в щелочном растворе емкость FeSi2-электрода имеет обычные для твердых металлических материалов значения (~40 мк Φ /см²) [12]. По-видимому, фактором, обусловливающим низкие значения емкости дисилицида железа в кислом растворе, является наличие на его поверхности тонкой диэлектрической оксидной пленки SiO2. В работах [16, 17], посвященных исследованию катодного поведения моносилицидов железа и никеля в кислых средах, также отмечается присутствие на поверхности электродов оксидной пленки.

Модификация $FeSi_2$ -электрода наводороживанием и анодным травлением в растворе серной кислоты снижает дифференциальную емкость, другие виды модификации – повышают. Снижение значений *С* при модификации наводороживанием и, в особенности, анодной поляризацией в растворе серной кислоты подтверждает предположение о наличии тонкого оксидного слоя на электроде.

Рис. 2. Зависимость дифференциальной емкости FeSi₂-электрода в 0,5 M H₂SO₄ от потенциала при частоте 10 кГц: 1 – без обработки; 2 – наводороживание при i = 30 мА/см²; 3 – анодное травление в 0,5 M H₂SO₄; 4 – анодное травление в 1,0 M NaOH; 5 – химическое травление в 5,0 M NaOH при 70 °C Fig. 2. Dependence of differential capacitance of FeSi₂ in 0.5 M H₂SO₄ on the potential at the frequency1 of 10 kHz:1 – without treatment; 2 – hydrogenation at i = 30 mA/cm²; 3 – anodic etching in 0.5 M H₂SO₄; 4 – anodic etching in 1.0 M NaOH; 5 – chemical etching in 5.0 M NaOH at 70 °C

М.М. Кузьминых, В.В. Пантелеева, А.Б. Шеин

Отношение емкостей модифицированного и немодифицированного FeSi₂-электрода равно 0,94; 0,90; 1,25 и 2,31 соответственно для модификации наводороживанием при i = 30 мА/см², анодным травлением в 0,5 М H₂SO₄, анодным травлением в 1,0 М NaOH и химическим травлением в 5,0 М NaOH при 70 °C (при E = -0,55 В). Отношение плотности токов силицида в этих же условиях составляет соответственно 2,8; 1,1; 3,7 и 7,8. Отношение плотности токов превышает отношение емкостей. Из этого следует, что скорость р.в.в. на модифицированном дисилициде железа увеличивается не только в результате развития поверхности электрода, но и в результате изменения состава поверхностного слоя.

Спектры импеданса немодифицированного FeSi₂-электрода в растворе 0,5 M H_2SO_4 в исследованной области потенциалов представляют собой емкостные полуокружности со смещенным центром (рис. 3).

Рис. 3. Спектры импеданса FeSi₂-электрода в 0,5 М H₂SO₄ при Е, В: 1 – -0,40; 2 – -0,43; 3 – -0,46; 4 – -0,49; 5 – -0,52; 6 – -0,55; 7 – -0,58; 8 – -0,61; 9 – -0,64; 10 – -0,67; 11 – -0,70 Fig. 3. Impedance spectra of FeSi₂ in 0.5 M H₂SO₄ at E, V: 1 – -0.40; 2 – -0.43; 3 – -0.46; 4 – -0.49; 5 – -0.52; 6 – -0.55; 7 – -0.58; 8 – -0.61; 9 – -0.64; 10 – -0.67; 11 – -0.70

Для моделирования р.в.в. на FeSi₂-электроде в растворе 0,5 М H₂SO₄ использована эквивалентная электрическая схема на рис. 4а. В схеме на рис. 4б вместо двойнослойной емкости используется элемент постоянной фазы CPE₁, который точнее описывает процесс заряжения двойного электрического слоя на неоднородной поверхности твердого электрода [18]. Отсутствие в схемах на рис. 4 параллельной $R_{ox}C_{ox}$ -цепочки (R_{ox} и C_{ox} – сопротивление ионного транспорта через оксидную пленку и емкость оксидной пленки), подключенной последовательно к межфазному импедансу и отражающей присутствие поверхностной оксидной пленки на силициде, обусловлено небольшой толщиной пленки в катодной области; в результате вклад импеданса пленки в общий импеданс мал, и область релаксации в цепочке $R_{ox}C_{ox}$ с малыми R_{ox} и C_{ox} приходится на частоты выше 20 кГц.

Рис. 4. Эквивалентные электрические схемы для FeSi₂ в 0,5 M H₂SO₄ в области потенциалов выделения водорода. R_s – сопротивление электролита, R_1 – сопротивление переноса заряда, сопротивление R_2 и емкость C₂ описывают адсорбцию атомарного водорода на поверхности электрода, C_1 – емкость двойного электрического слоя, CPE₁ – элемент постоянной фазы, моделирующий емкость двойного электрического слоя на неоднородной поверхности твердого электрического слоя Ha неоднородной поверхности твердого электрода Fig. 4. Equivalent circuits for FeSi₂ in 0.5 M H₂SO₄ for the range of potentials of hydrogen evolution. R_s –solution resistance, R_1 – charge transfer resistance, resistance R_2 and capacitance C_2 describe the adsorption of atomic hydrogen on the electrode surface, C_1 – double layer capacitance on the inhomogeneous electrode surface

Значения параметра χ^2 для эквивалентной схемы на рис. 4б находятся в интервале (2-7)·10⁻⁵ (при оценке χ^2 использовали весовые коэффициенты, рассчитанные по экспериментальным значениям модуля импеданса). Значения параметров эквивалентной схемы приведены в таблице.

Результаты определения численных значений элементов эквивалентной схемы на рис. 46 для FeSi₂-электрода в 0,5 M H₂SO₄ приведены на рис. 5. Зависимости lgX ($X = R_1, R_2, C_2$) от потенциала электрода близки к прямолинейным. Наклоны $dlgR_1/dE$, $dlgR_2/dE$, $dlgC_2/dE$ равны 3,8; 7,5 и -1,3 В⁻¹ соответственно. Из полученных зависимостей элементов фарадеевского импеданса от *E* можно сделать вывод о выполнении изотермы адсорбции Ленгмюра для H_{адс}. Экспериментальные значения dlgX/dE близки к теоретического) для механизма разряд – электрохимическая десорбция, где десорбция

– скорость-определяющая стадия, обе стадии необратимы, коэффициенты переноса равны, одновременно протекает реакция абсорбции водорода в кинетическом режиме [19, 20].

Таблица Значения параметров эквивалентной схемы на рис. 46 для FeSi₂-электрода в 0,5 M H₂SO₄

Table. The values of the equivalent circuit parameters (Fig. 46) for FeSi₂ in 0.5 M H₂SO₄

Е, В	R_1 ,	R_2 ,	$C_2 \cdot 10^5$,	$Q_1 \cdot 10^5$,	n .
	$OM \cdot CM^2$	$OM \cdot CM^2$	$\Phi \cdot cm^{-2}$	$\Phi \cdot c M^{-2} \cdot c^{(p-1)}$	p_1
-0,40	456	1130	0,98	13,0	0,706
-0,43	276	535	1,57	13,5	0,703
-0,46	174	278	1,78	10,2	0,732
-0,49	127	162	1,96	8,73	0,747
-0,52	86,3	92,5	1,69	7,37	0,764
-0,55	79,5	54,2	2,26	6,86	0,770
-0,58	64,4	30,1	2,68	6,21	0,779
-0,61	46,8	22,3	2,39	4,91	0,804
-0,64	37,7	13,6	2,51	4,56	0,810
-0.67	30.3	8.2	3.71	3.56	0.831

Рис. 5. Зависимости $1 - lgR_1$ (R_1 , $Om \times cm^2$), $2 - lgR_2$ (R_2 , $Om \times cm^2$), $3 - lgC_2$ (C_2 , $mk\Phi/cm^2$) для FeSi₂-электрода в 0,5 M H₂SO₄ от потенциала

Fig. 5. Dependencies of lgR_1 (R₁, Ohm×cm²), $2 - lgR_2$ (R₂, Ohm×cm²), 3 - lgC_2 (C₂, μ F/cm²) on the potential E for FeSi₂ elecvtrode in 0.5 M H₂SO₄

Модификация рабочей поверхности FeSi₂электрода оказывает слабое влияние на вид спектров импеданса, однако снижает модуль импеданса |Z|. Уменьшение величины |Z| находится в соответствии с поляризационными измерениями (рис. 1). Для моделирования р.в.в. на модифицированном дисилициде железа также использована эквивалентная схема на рис.46. Значения параметра χ^2 находятся в интервале (2-7)·10⁻⁵. Зависимости lgX от потенциала близки к прямолинейным, наклоны dlgX/dE имеют сопоставимые с этими величинами для немодифицированного электрода значения.

Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 2

выводы

Установлено, что реакция выделения водорода на FeSi₂-электроде в сернокислом электролите протекает по маршруту разряд – электрохимическая десорбция с замедленной стадией десорбции, обе стадии необратимы, коэффициенты переноса равны, одновременно протекает реакция абсорбции водорода в кинетическом режиме; для адсорбированного водорода выполняется изотерма адсорбции Ленгмюра. Отмечается влияние тонкой оксидной пленки на кинетику выделения водорода на FeSi₂ при невысоких катодных поляризациях. Обнаружено, что модификация поверхности FeSi₂

ЛИТЕРАТУРА

- 1. Козин Л.Ф., Волков С.В. Современная энергетика и экология: проблемы и перспективы. Киев: Наукова думка. 2006. 775 с.
- Eftekhari A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy. 2017. V. 42. N 16. P. 11053-11077. DOI: 10.1016/j.ijhydene.2017.02.125.
- 3. Манилевич Ф.Д., Куцый А.В., Козин Л.Ф. Закономерности выделения водорода на катодах, модифицированных сплавом Мо-Со. *Физикохим. пов-ти и защита матлов.* 2010. Т. 46. № 5. С. 454-460.
- Вигдорович В.И., Цыганкова Л.Е., Кичигин В.И., Гладышева И.Е. Кинетика реакции выделения водорода в кислых средах на прессованных микрографитовых электродах, модифицированных углеродными нанотрубками. П. Импедансные исследования. Физикохим. пов-ти и защита мат-лов. 2012. Т. 48. № 4. С. 373-378.
- Meyer S., Nikiforov A.V., Petrushina I.M., Kohler K., Christensen E., Jensen J.O., Bjerrum N.J. Transition metal carbides (WC, Mo₂C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. *Int. J. Hydrogen Energy*. 2015. V. 40. N 7. P. 2905-2911. DOI: 10.1016/j.ijhydene.2014.12.076.
- Schalenbach M. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. *Electrochim. Acta.* 2018. V. 259. P. 1154-1161. DOI: 10.1016/j.electacta.2017.11.069.
- Kichigin V.I., Shein A.B. An electrochemical study of the hydrogen evolution reaction at YNi₂Ge₂ and LaNi₂Ge₂ electrodes in alkaline solutions. *J. Electroanalyt. Chem.* 2018. V. 830-831. P. 72-79. DOI: 10.1016/j.jelechem.2018.10.029.
- Шеин А.Б. Электрохимия силицидов и германидов переходных металлов. Пермь: Перм. гос. ун-т. 2009. 269 с.
- Kichigin V.I., Shein A.B. Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions. *Electrochim. Acta.* 2015. V. 164. P. 260-266. DOI: 10.1016/j.electacta.2015.02.198.
- Шамсутдинов А.Ш., Шеин А.Б. Катодное выделение водорода на моносилициде кобальта в растворах серной кислоты. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 11. С. 63-69.
- Шеин А.Б., Кичигин В.И., Пантелеева В.В. Исследование электрокаталитической активности ряда металлоподобных и интерметаллических соединений в реакции выделения водорода и разработка способов ее повышения. Вестн. Перм. науч. центра УрО РАН. 2017. № 2. С. 96-100.

наводороживанием, анодным травлением в растворах серной кислоты и гидроксида натрия, высокотемпературным химическим травлением в щелочном растворе снижает перенапряжение выделения водорода; механизм реакции выделения водорода в результате модификации не изменяется. Уменьшение перенапряжения выделения водорода обусловлено развитием и изменением состава поверхностного слоя электрода. Сделан вывод, что FeSi₂ представляет перспективный электродный материал, проявляющий активность в реакции электролитического выделения водорода.

REFERENCES

- 1. **Kozin L.F., Volkov S.V.** Modern energy and ecology: problems and prospects. Kiev: Naukova dumka. 2006. 775 p. (in Russian).
- Eftekhari A. Electrocatalysts for hydrogen evolution reaction. *Int. J. Hydrogen Energy*. 2017. V. 42. N 16. P. 11053-11077. DOI: 10.1016/j.ijhydene.2017.02.125.
- Manilevich F.D., Kutsyy A.V., Kozin L.F. Patterns of hydrogen evolution on cathodes modified with Mo-Co alloy. *Fizikokhim. Pov-ti Zashchita Mat-lov.* 2010. V. 46. N 5. P. 454-460 (in Russian).
- Vigdorovich V.I., Tsygankova L.E., Kichigin V.I., Gladysheva I.E. Kinetics of the hydrogen evolution reaction in acidic media on pressed micrographite electrodes modified with carbon nanotubes. II. Impedance studies *Fizikokhim. Pov-ti Zashchita Mat-lov.* 2012. V. 48. N 4. P. 373-378 (in Russian).
- Meyer S., Nikiforov A.V., Petrushina I.M., Kohler K., Christensen E., Jensen J.O., Bjerrum N.J. Transition metal carbides (WC, Mo₂C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. *Int. J. Hydrogen Energy.* 2015. V. 40. N 7. P. 2905-2911. DOI: 10.1016/j.ijhydene.2014.12.076.
- Schalenbach M. Nickel-molybdenum alloy catalysts for the hydrogen evolution reaction: Activity and stability revised. *Electrochim. Acta.* 2018. V. 259. P. 1154-1161. DOI: 10.1016/j.electacta.2017.11.069.
- Kichigin V.I., Shein A.B. An electrochemical study of the hydrogen evolution reaction at YNi₂Ge₂ and LaNi₂Ge₂ electrodes in alkaline solutions. *J. Electroanalyt. Chem.* 2018. V. 830-831. P. 72-79. DOI: 10.1016/j.jelechem.2018.10.029.
- Shein A.B. Electrochemistry of silicides and germanides of transition metals. Perm': Perm. Gos. Un-t. 2009. 269 p. (in Russian).
- Kichigin V.I., Shein A.B. Kinetics and mechanism of hydrogen evolution reaction on cobalt silicides in alkaline solutions. *Electrochim. Acta.* 2015. V. 164. P. 260-266. DOI: 10.1016/j.electacta.2015.02.198.
- Shamsutdinov A.Sh., Shein A.B. Cathodic hydrogen evolution at cobalt monosilicide in sulfuric acid solutions. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2016. V. 59. N 11. P. 63-69 (in Russian).
- 11. Shein A.B., Kichigin V.I., Panteleeva V.V. Investigation of the electrocatalytic activity of a number of metal-like and intermetallic compounds in the hydrogen evolution reaction and the development of ways to improve it. *Vestn. Perm. Nauch. Tsentra UrO RAN.* 2017. N 2. P. 96-100 (in Russian).

M.M. Kuzminykh, V.V. Panteleeva, A.B. Shein

- Кузьминых М.М., Пантелеева В.В., Шеин А.Б. Катодное выделение водорода на дисилициде железа. І. Щелочная среда. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 1. С. 38-45.
- Shamsul Huq A.K.M., Rosenberg A.J.J. Electrochemical Behavior of Nickel Compounds: I. The Hydrogen Evolution Reaction on NiSi, NiAs, NiSb, NiS, NiTe₂, and Their Constituent Elements. *Electrochem. Soc.* 1964. V. 111. N 3. P. 270-278. DOI: 10.1007/BF02849200.
- 14. Гельд П.В., Сидоренко Ф.А. Силициды переходных металлов четвертого периода. М.: Металлургия. 1981. 632 с.
- Borisenko V.E. Semiconducting Silicides. Berlin: Springer. 2000. 348 p.
- 16. Кичигин В.И., Шеин А.Б., Шамсутдинов А.Ш. Кинетика катодного выделения водорода на моносилициде железа в кислых и щелочных средах. Конденсир. среды и межфаз. ераницы. 2016. Т. 18. № 3. С. 326-337.
- Кичигин В.И., Шеин А.Б., Шамсутдинов А.Ш. Кинетика реакции выделения водорода на моносилициде никеля в кислом и щелочном растворах. Конденсир. среды и межфаз. границы. 2017. Т. 19. № 2. С. 222-231.
- Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. New York: J. Wiley and Sons, Hoboken. 2008. 533 p.
- Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. *Electrochim. Acta.* 2014. V. 138. P. 325-333. DOI: 10.1016/j.electacta.2014.06.114.
- Kichigin V.I., Shein A.B. Influence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. *Electrochim. Acta*. 2016. V. 201. P. 233-239. DOI: 10.1016/j.electacta.2016.03.194.

- Kuz'minykh M.M., Panteleeva V.V., Shein A.B. Cathodic hydrogen evolution on iron disilicide. I. Alkaline solution. *Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.* 2019. V. 62. N 1. P. 38-45 (in Russian).
- Shamsul Huq A.K.M., Rosenberg A.J.J. Electrochemical behavior of nickel compounds: I. The hydrogen evolution reaction on NiSi, NiAs, NiSb, NiS, NiTe₂, and their constituent elements. *Electrochem. Soc.* 1964. V. 111. N 3. P. 270-278. DOI: 10.1007/BF02849200.
- 14. **Gel'd P.V., Sidorenko F.A.** Silicides of transition metals of the fourth period. M.: Metallurgiya. 1981. 632 p. (in Russian).
- 15. **Borisenko V.E.** Semiconducting Silicides. Berlin: Springer. 2000. 348 p.
- Kichigin V.I., Shein A.B., Shamsutdinov A.Sh. Kinetics of cathodic hydrogen evolution on iron monosilicide in acidic and alkaline solutions. *Kondensir. Sredy Mezhfaz. Granitsy.* 2016. V. 18. N 3. P. 326-337 (in Russian).
- 17. Kichigin V.I., Shein A.B., Shamsutdinov A.Sh. Kinetics of the hydrogen evolution reaction on nickel monosilicide in acidic and alkaline solutions. *Kondensir. Sredy Mezhfaz. Granitsy.* 2017. V. 19. N 2. P. 222-231 (in Russian).
- Orazem M.E., Tribollet B. Electrochemical Impedance Spectroscopy. New York: J. Wiley and Sons, Hoboken. 2008. 533 p.
- Kichigin V.I., Shein A.B. Diagnostic criteria for hydrogen evolution mechanisms in electrochemical impedance spectroscopy. *Electrochim. Acta.* 2014. V. 138. P. 325-333. DOI: 10.1016/j.electacta.2014.06.114.
- Kichigin V.I., Shein A.B. Influence of hydrogen absorption on the potential dependence of the Faradaic impedance parameters of hydrogen evolution reaction. *Electrochim. Acta*. 2016. V. 201. P. 233-239. DOI: 10.1016/j.electacta.2016.03.194.

Поступила в редакцию 13.12.2017 Принята к опубликованию 25.12.2018

Received 13.12.2017 Accepted 25.12.2018